85 resultados para numerical simulations
Resumo:
Linearly polarized solitary waves, arising from the interaction of an intense laser pulse with a plasma, are investigated. Localized structures, in the form of exact numerical nonlinear solutions of the one-dimensional Maxwell-fluid model for a cold plasma with fixed ions, are presented. Unlike stationary circularly polarized solitary waves, the linear polarization gives rise to a breather-type behavior and a periodic exchange of electromagnetic energy and electron kinetic energy at twice the frequency of the wave. A numerical method based on a finite-differences scheme allows us to compute a branch of solutions within the frequency range Ωmin<Ω<ωpe, where ωpe and Ωmin are the electron plasma frequency and the frequency value for which the plasma density vanishes locally, respectively. A detailed description of the spatiotemporal structure of the waves and their main properties as a function of Ω is presented. Small-amplitude oscillations appearing in the tail of the solitary waves, a consequence of the linear polarization and harmonic excitation, are explained with the aid of the Akhiezer-Polovin system. Direct numerical simulations of the Maxwell-fluid model show that these solitary waves propagate without change for a long time.
Resumo:
In this paper, we consider the variable selection problem for a nonlinear non-parametric system. Two approaches are proposed, one top-down approach and one bottom-up approach. The top-down algorithm selects a variable by detecting if the corresponding partial derivative is zero or not at the point of interest. The algorithm is shown to have not only the parameter but also the set convergence. This is critical because the variable selection problem is binary, a variable is either selected or not selected. The bottom-up approach is based on the forward/backward stepwise selection which is designed to work if the data length is limited. Both approaches determine the most important variables locally and allow the unknown non-parametric nonlinear system to have different local dimensions at different points of interest. Further, two potential applications along with numerical simulations are provided to illustrate the usefulness of the proposed algorithms.
Resumo:
Quasi-phase matching (QPM) can be used to increase the conversion efficiency of the high harmonic generation (HHG) process. We observed QPM with an improved dual-gas foil target with a 1 kHz, 10 mJ, 30 fs laser system. Phase tuning and enhancement were possible within a spectral range from 17 nm to 30 nm. Furthermore analytical calculations and numerical simulations were carried out to distinguish QPM from other effects, such as the influence of adjacent jets on each other or the laser gas interaction. The simulations were performed with a 3 dimensional code to investigate the phase matching of the short and long trajectories individually over a large spectral range.
Resumo:
A range of lanthanum strontium manganates (La1−xSrxMnO3–LSMO) where 0 ≤ x < 0.4 were prepared using a modified peroxide sol–gel synthesis method. The magnetic nanoparticle (MNP) clusters obtained for each of the materials were characterised using scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and infra-red (IR) spectroscopy in order to confirm the crystalline phases, crystallite size and cluster morphology. The magnetic properties of the materials were assessed using the Superconducting quantum interference device (SQUID) to evaluate the magnetic susceptibility, Curie temperature (Tc) and static hysteretic losses. Induction heating experiments also provided an insight into the magnetocaloric effect for each material. The specific absorption rate (SAR) of the materials was evaluated experimentally and via numerical simulations. The magnetic properties and heating data were linked with the crystalline structure to make predictions with respect to the best LSMO composition for mild hyperthermia (41 °C ≤ T ≤ 46 °C). La0.65Sr0.35MnO3, with crystallite diameter of 82.4 nm, (agglomerate size of ∼10 μm), Tc of 89 °C and SAR of 56 W gMn−1 at a concentration 10 mg mL−1 gave the optimal induction heating results (Tmax of 46.7 °C) and was therefore deemed as most suitable for the purposes of mild hyperthermia, vide infra.
Resumo:
This paper reports the realisation of precision surface finish (Ra 30 nm) on AISI 4340 steel using a conventional turret lathe by adapting and incorporating a surface defect machining (SDM) method [Wear, 302, 2013 (1124-1135)]. Conventional ways of machining materials are limited by the use of a critical feed rate, experimentally determined as 0.02 mm/rev, beyond which no appreciable improvement in the machined quality of the surface is obtained. However, in this research, the novel application of an SDM method was used to overcome this minimum feed rate limitation ultimately reducing it to 0.005 mm/rev and attaining an average machined surface roughness of 30 nm. From an application point of view, such a smooth finish is well within the values recommended in the ASTM standards for total knee joint prosthesis. Further analysis was done using SEM imaging, white light interferometry and numerical simulations to verify that adapting SDM method provides improved surface integrity by reducing the extent of side flow, microchips and weldments during the hard turning process.
Resumo:
This paper reports a new method for reducing theRadar Cross-Section (RCS) of a metal backed dipole antenna. Numerical simulations are used to show that when the Perfect Electrical Conductor (PEC) is replaced by a carefully designedFrequency Selective Surface (FSS), the electromagnetic performanceof the antenna is similar in band, but the RCS of the structure is significantly lower out of band. The design of the FSSand the return loss, radiation patterns and RCS are presentedfor an antenna which operates at a center frequency of 4 GHzand the results are compared with a conventional metal backed arrangement
Resumo:
In this paper we study the well-posedness for a fourth-order parabolic equation modeling epitaxial thin film growth. Using Kato's Method [1], [2] and [3] we establish existence, uniqueness and regularity of the solution to the model, in suitable spaces, namelyC0([0,T];Lp(Ω)) where with 1<α<2, n∈N and n≥2. We also show the global existence solution to the nonlinear parabolic equations for small initial data. Our main tools are Lp–Lq-estimates, regularization property of the linear part of e−tΔ2 and successive approximations. Furthermore, we illustrate the qualitative behavior of the approximate solution through some numerical simulations. The approximate solutions exhibit some favorable absorption properties of the model, which highlight the stabilizing effect of our specific formulation of the source term associated with the upward hopping of atoms. Consequently, the solutions describe well some experimentally observed phenomena, which characterize the growth of thin film such as grain coarsening, island formation and thickness growth.
Resumo:
Time-domain modelling of single-reed woodwind instruments usually involves a lumped model of the excitation mechanism. The parameters of this lumped model have to be estimated for use in numerical simulations. Several attempts have been made to estimate these parameters, including observations of the mechanics of isolated reeds, measurements under artificial or real playing conditions and estimations based on numerical simulations. In this study an optimisation routine is presented, that can estimate reed-model parameters, given the pressure and flow signals in the mouthpiece. The method is validated, tested on a series of numerically synthesised data. In order to incorporate the actions of the player in the parameter estimation process, the optimisation routine has to be applied to signals obtained under real playing conditions. The estimated parameters can then be used to resynthesise the pressure and flow signals in the mouthpiece. In the case of measured data, as opposed to numerically synthesised data, special care needs to be taken while modelling the bore of the instrument. In fact, a careful study of various experimental datasets revealed that for resynthesis to work, the bore termination impedance should be known very precisely from theory. An example is given, where the above requirement is satisfied, and the resynthesised signals closely match the original signals generated by the player.
Resumo:
We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread that is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.
Resumo:
In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.