98 resultados para numerical behaviour analysis
Resumo:
Considering that TBMs are nowadays used for long Trans-Alpine tunnels, the
understanding of rock breaking and chipping due to TBM cutter disks mechanism, for deep tunnelling operations, becomes very interesting. In this paper, the results from carried out laboratory tests that simulate the disk cutter action at the rock tunnel face by means of an indentation tool, acting on a rock
specimen with proper size, and the related three-dimensional and two-dimensional numerical modelling are proposed. The developed numerical models simulate the different test conditions (applied load, boundary conditions) allowing the analysis of the stresses distributions along possible breaking planes.
The influence of a confinement-free area on one side of the specimen, simulating the formation of a groove near the tool, is pointed out.
The obtained results from numerical modelling put in evidence a satisfactory agreement with the experimental observations.
Resumo:
This paper investigates the pull-out behaviour (particularly the bearing resistance) of a steel grid reinforcement embedded in silty sand using laboratory tests and numerical analyses. It is demonstrated that the various common analytical equations for calculating the bearing component of pull-out resistance give a wide range of calculated values, up to about 200% disparity. The disparity will increase further if the issue of whether to use the peak or critical state friction angle is brought in. Furthermore, these equations suggest that the bearing resistance factor, N, is only a function of soil friction angle which is not consistent with some design guidelines. In this investigation, a series of large scale laboratory pull-out tests under different test pressures were conducted. The test results unambiguously confirmed that the N factor is a function of test pressure. A modified equation for calculating N is also proposed. To have more in-depth understanding of the pull-out behaviour, the tests were modelled numerically. The input parameters for the numerical analysis were obtained from laboratory triaxial tests. The analysis results were compared with the experimental results. Good agreement between experimental and numerical results was achieved if the strain-softening behaviour from peak strength to critical state condition was captured by the soil model used. © 2013 Elsevier Ltd.
Resumo:
Different classes of constitutive models have been proposed to capture the time-dependent behaviour of soft soil (creep, stress relaxation, rate dependency). This paper critically reviews many of the models developed based on understanding of the time dependent stress-strain-stress rate-strain rate behaviour of soils and viscoplasticity in terms of their strengths and weaknesses. Some discussion is also made on the numerical implementation aspects of these models. Typical findings from numerical analyses of geotechnical structures constructed on soft soils are also discussed. The general elastic viscoplastic (EVP) models can roughly be divided into two categories: models based on the concept of overstress and models based on non-stationary flow surface theory. Although general in structure, both categories have their own strengths and shortcomings. This review indicates that EVP analysis is yet to be vastly used by the geotechnical engineers, apparently due to the mathematical complication involved in the formulation of the constitutive models, unconvincing benefit in terms of the accuracy of performance prediction, requirement of additional soil parameter(s), difficulties in determining them, and the necessity of excessive computing resources and time. © 2013 Taylor & Francis.
Resumo:
A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).
Resumo:
This article considers the trajectory and effectiveness of policy, procedures and practice in the UK since the early 1990s in responding to young people who display problematic and harmful sexual behaviours. It draws on data from three publications in which research, policy and practice in the last 20 years have been reviewed. Key themes raised by Masson and Hackett are revisited including: denial and minimisation; terminology and categorisation; similarities with other young offenders; the child protection and youth justice systems; and assessment and interventions. The authors find that there is improvement in recognition of, and practice in response to, this group of young people, but good practice standards are inconsistently applied. With devolution of political powers, Scotland and Northern Ireland are now embarking on a more strategic response than England. The absence of a public debate and prioritising of primary prevention of child sexual abuse is noted.
Resumo:
Milling is an important operation in many industries, such as mining and pharmaceutical. Although the comminution process during milling has been extensively studied, the material fragmentation mechanisms in a mill are still not well understood partly because of the lack of an understanding on the local stressing and dynamic information under operational conditions in mills. This paper presents a DEM simulation of particle dynamics and impact events in a centrifugal impact pin mill. The main focus is the statistical characteristics of the dominant stressing modes during the milling process. The frequency, velocity and force of the different impact events between particles and mill components, or between particles, are analysed. © 2013 AIP Publishing LLC.
Resumo:
This paper presents the numerical simulation of the ultimate behaviour of 85 one-way and two-way spanning laterally restrained concrete slabs of variable thickness, span, reinforcement ratio, strength and boundary conditions reported in literature by different authors. The developed numerical model was described and all the assumptions were illustrated. ABAQUS, a Finite Element Analysis suite of software, was employed. Non-linear implicit static general analysis method offered by ABAQUS was used. Other analysis methods were also discussed in general in terms of application such as Explicit Dynamic Analysis and Riks method. The aim is to demonstrate the ability and efficacy of FEA to simulate the ultimate load behaviour of slabs considering different material properties and boundary conditions. The authors intended to present a numerical model that provides consistent predictions of the ultimate behaviour of laterally restrained slabs that could be used as an alternative for expensive real life testing as well as for the design and assessment of new and existing structures respectively. The enhanced strength of laterally-restrained slabs compared with conventional design methods predictions is believed to be due to compressive membrane action (CMA). CMA is an inherent phenomenon of laterally restrained concrete beams/slabs. The numerical predictions obtained from the developed model were in good correlation with the experimental results and with those obtained from the CMA method developed at the Queen’s University Belfast, UK.
Resumo:
Strengthening reinforced concrete (RC) structures by externally bonded FRP composites has been widely used for static loading and seismic retrofitting since 1990s. More recently many studies on strengthening concrete and masonry structures with externally bonded FRP for improved blast and impact resistance in protective engineering have also been conducted. The bond behaviour between the FRP and concrete plays a critical role in a strengthening system with externally bonded FRP. However, the understanding of how the bond between FRP and concrete performs under high strain rate is severely limited. Due to the dynamic characteristics of blast and impact loading, the bond behaviour between FRP and concrete under such loading is very different from that under static loading. This paper presents a study on the dynamic bond-slip behaviour based on both the numerical analysis and test results. A dynamic bond-slip model is proposed in this paper.
Resumo:
A three-dimensional continuum damage mechanics-based material model has been implemented in an implicit Finite Element code to simulate the progressive degradation of advanced composite materials. The damage model uses seven damage variables assigned to tensile, compressive and non-linear shear damage at a laminae level. The objectivity of the numerical discretization is assured using a smeared formulation. The material model was benchmarked against experimental uniaxial coupon tests and it is shown to reproduce key aspects observable during failure, such as the inclined fracture plane in matrix compression and the shear band in a ±45° tension specimen.