102 resultados para nitrogen reorganization
Resumo:
Arsenic (As) is mobilized from delta and floodplain aquifer sediments throughout S.E. Asia via reductive dissolution of As bound to iron (Fe) oxyhydroxides. The reductive driving force is organic carbon, but its source and constitution is uncertain. Here batch incubation experiments were conducted to investigate the role of organic matter (OM) carbon:nitrogen (C:N) ratio on the mobilization of arsenic, Fe and N from As dosed, Fe oxyhydroxide coated sands. As mobilization into pore waters from the sand was strongly regulated by the C:N ratio of the OM, and also the concentration of OM present. The lower the C:N, the more As released. Fe and ammonium release were similarly dependent on the quality and quantity of OM, but Fe mobilization was more rapid and ammonium release slower than As suggesting that the mobilization of these 3 moieties although interdependent, were not directly linked. It was concluded that low C:N ratios for OM responsible for reducing aquifers were As in groundwater is observed were likely.
Resumo:
We compared the ability of five strains of the ericoid mycorrhizal fungus Hymenoscyphus ericae to utilise glutamine, ammonium or nitrate at high or low carbon (C) availability. The pattern of intraspecific variation in growth was affected by C availability. When C supply was high, growth differences between strains were explained by the total amount of nitrogen (N) taken up, suggesting variation in uptake kinetics. Under C-limiting conditions, strain differences were linked with their nitrogen use efficiency, implying intraspecific differences in N metabolism. The relationship between growth on glutamine and pH shifts in the media indicated that there was intraspecific variation in glutamine transporters. In addition, the correlation between pH changes and the amount of glutamine-N recovered as ammonium in the media indicated that there were intraspecific variations within the enzymatic pathways involved in glutamine metabolism. Our findings, compared with those of a previous study involving the same ericoid strains, draw attention to the temporal variation in nitrogen source utilisation by ericoid mycorrhizal fungi when maintained in axenic culture.
Resumo:
Flow responsive passive samplers offer considerable potential in nutrient monitoring in catchments; bridging the gap between the intermittency of grab sampling and the high cost of automated monitoring systems. A commercially available passive sampler was evaluated in a number of river systems encapsulating a gradient in storm response, combinations of diffuse and point source pressures, and levels of phosphorus and nitrogen concentrations. Phosphorus and nitrogen are sequestered to a resin matrix in a permeable cartridge positioned in line with streamflow. A salt tracer dissolves in proportion to advective flow through the cartridge. Multiple deployments of different cartridge types were undertaken and the recovery of P and N compared with the flow-weighted mean concentration (FWMC) from high-resolution bank-side analysers at each site. Results from the passive samplers were variable and largely underestimated the FWMC derived from the bank-side analysers. Laboratory tests using ambient river samples indicated good replication of advective throughflow using pumped water, although this appeared not to be a good analogue of river conditions where flow divergence was possible. Laboratory tests also showed good nutrient retention but not elution and these issues appeared to combine to limit the utility in ambient river systems at the small catchment scale.
Resumo:
We report on electron paramagnetic resonance (EPR) studies of nitrogen doped diamond that has been N-15 enriched, electron irradiated and annealed. EPR spectra from two new nitrogen containing S = 1/2 defects are detected and labelled WAR9 and WAR10. We show that the properties of these defects are consistent with them being the < 001 >-nitrogen split interstitial and the < 001 >-nitrogen split interstitial-< 001 >-carbon split interstitial pair, respectively. We also provide an explanation for why these defects have previously eluded discovery.
Resumo:
The N-14, N-15, and C-13 hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV-) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the N-14 hyperfine interaction do not produce a satisfactory fit to the experimental NV- electron-paramagnetic-resonance data. The small anisotropic component of the NV- hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV- ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with C-13 neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest C-13 interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.
Resumo:
Despite the numerous experimental and theoretical studies on the negatively charged nitrogen vacancy center (NV-) in diamond and the predictions that the neutral nitrogen vacancy center (NV0) should have an S=1/2 ground state, NV0 has not previously been detected by electron paramagnetic resonance (EPR). We report new EPR data on a trigonal nitrogen-containing defect in diamond with an S=3/2 excited state populated via optical excitation. Analysis of the spin Hamiltonian parameters and the wavelength dependence of the optical excitation leads to assignment of this S=3/2 state to the (4)A(2) excited state of NV0. This identification, together with an examination of the electronic structure of the NV centers in diamond, provides a plausible explanation for the lack of observation (to date) of an EPR signal from the NV0 ground state.
Resumo:
The reactions of surface functional groups have an important role in controlling conversion of char nitrogen to NOx during coal combustion. This study involved an investigation of the thermal stability and reactions of nitrogen surface functional groups in nanoporous carbons. Four suites of carbons, which were used as models for coal chars, were prepared with a wide range of nitrogen and oxygen contents and types of functional groups. The porous structures of the carbons were characterized by gas adsorption methods while chemical analysis, X-ray photoelectron spectroscopy, and X-ray near edge structure spectroscopy were used to characterize the surface functional groups. Temperature programmed desorption and temperature programmed reduction methods were used to study the reactivity of the surface functional groups during heat treatment under inert and reducing conditions. Heat treatment studies show that the order of stability of the functional groups is quaternary nitrogen > pyridinic > pyrrolic > pyridine N-oxide. Pyridine N-oxide surface groups desorb NO and form N-2 via surface reactions at low temperature. Pyrrolic and pyridinic functional groups decompose and react with surface species to give NH3, HCN, and N-2 as desorption products, but most pyrrolic groups are preferentially converted to pyridinic and quaternary nitrogen. The main desorption product is N-2. Approximately 15-40 wt % of the original nitrogen was retained in the carbons mainly as quaternary nitrogen after heat treatment to 1673 K. The results are discussed in terms of decomposition ranges for surface functional groups and reaction mechanisms of surface species.
Resumo:
In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.
Resumo:
A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.
Resumo:
Nitrogen is one of the most common impurities in diamond. On a substitutional site it acts as a deep donor, approximately 1.7 eV below the conduction band. Irradiation of nitrogen containing diamond and subsequent annealing creates the nitrogen vacancy centre, which has recently attracted much attention for quantum information processing application. Another possible product of irradiation and annealing of nitrogen containing diamond is interstitial nitrogen. Presumably, a mobile carbon interstitial migrates to a substitutional nitrogen to produce an interstitial nitrogen complex which may or may not be mobile. The configuration(s) of interstitial nitrogen related defects (e.g. bond centred, [001]-split) are not known. An infra-red (IR) absorption peak at 1450 cm-1 labelled H1a has been associated with an nitrogen interstitial complex. [1] Theoretical modelling suggested that this IR local mode is due to a bond centred nitrogen interstitial [2]. However, more recent modelling [3] suggests that this defect is mobile at temperatures were H1a is stable and instead assign H1a to two nitrogen atoms occupying a single lattice site in a [001]-split configuration. To date no electron paramagnetic resonance (EPR) spectra have been conclusively associated with an interstitial nitrogen defect.
In this study we present data from new EPR and optical absorption studies in combination with uniaxial stress of nitrogen interstitial related defects in electron irradiated and annealed nitrogen doped diamond. These measurements yield symmetry information about the defects allowing us to determine which of the proposed models are possible. EPR spectra of nitrogen interstitial related defects in samples isotopically enriched with 15N are reported and we show that these explain the lack of previous EPR data for these defects. Correlations between the IR absorbance and the integrated intensity of the new EPR defects are studied for varying irradiation doses and annealing temperatures.
Resumo:
Lovastatin biosynthesis depends on the relative concentrations of dissolved oxygen and the carbon and nitrogen resources. An elucidation of the underlying relationship would facilitate the derivation of a controller for the improvement of lovastatin yield in bioprocesses. To achieve this goal, batch submerged cultivation experiments of lovastatin production by Aspergillus flavipus BICC 5174, using both lactose and glucose as carbon sources, were performed in a 7 liter bioreactor and the data used to determine how the relative concentrations of lactose, glucose, glutamine and oxygen affected lovastatin yield. A model was developed based on these results and its prediction was validated using an independent set of batch data obtained from a 15-liter bioreactor using five statistical measures, including the Willmott index of agreement. A nonlinear controller was designed considering that dissolved oxygen and lactose concentrations could be measured online, and using the lactose feed rate and airflow rate as process inputs. Simulation experiments were performed to demonstrate that a practical implementation of the nonlinear controller would result in satisfactory outcomes. This is the first model that correlates lovastatin biosynthesis to carbon-nitrogen proportion and possesses a structure suitable for implementing a strategy for controlling lovastatin production.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.
Resumo:
Milling of plant and soil material in plastic tubes, such as microcentrifuge tubes, over-estimates carbon (C) and under-estimates nitrogen (N) concentrations due to the introduction of polypropylene into milled samples, as identified using Fourier-transform infra-red spectroscopy.
This study compares C and N concentrations of roots and soil milled in microcentrifuge tubes versus stainless steel containers, demonstrating that a longer milling time, greater milling intensity, smaller sample size and inclusion of abrasive sample material all increase polypropylene contamination from plastic tubes leading to overestimation of C concentrations by up to 8 % (0.08 g g(-1)).
Erroneous estimations of C and N, and other analytes, must be assumed after milling in plastic tubes and milling methods should be adapted to minimise such error.