87 resultados para methyl salicylate
Resumo:
Thermosensitive hydrogels are of a great interest due to their many biomedical and pharmaceutical applications. In this study, we synthesized a new series of random poly (methyl vinyl ether-co-maleic anhydride) (Gantrez (R) AN, GZ) and Pluronic (R) F127 (PF127) copolymers (GZ-PF127), that formed thermosensitive hydrogels whose gelation temperature and mechanical properties could be controlled by the molar ratio of GZ and PF127 polymers and the copolymer concentration in water. Gelation temperatures tended to decrease when the GZm/PF127 ratio increased. Thus, at a fixed GZm/PF127 value, sol-gel temperatures decreased at higher copolymer concentrations. Moreover, these hydrogels controlled the release of proteins such as bovine serum albumin (BSA) and recombinant recombinant kinetoplastid membrane protein of Leishmania (rKMP-11) more than the PF127 system. Toxicity studies carried out in J774.2 macrophages showed that cell viability was higher than 80%. Finally, histopathological analysis revealed that subcutaneous administration of low volumes of these hydrogels elicited a tolerable inflammatory response that could be useful to induce immune responses against the protein cargo in the development of vaccine adjuvants.
Resumo:
The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.
Resumo:
The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions.
Resumo:
Quantum yields of the photocatalytic degradation of methyl orange under controlled periodic illumination (CPI) have been modelled using existing models. A modified Langmuir-Hinshelwood (L-H) rate equation was used to predict the degradation reaction rates of methyl orange at various duty cycles and a simple photocatalytic model was applied in modelling quantum yield enhancement of the photocatalytic process due to the CPI effect. A good agreement between the modelled and experimental data was observed for quantum yield modelling. The modified L-H model, however, did not accurately predict the photocatalytic decomposition of the dye under periodic illumination.
Resumo:
Ligated Pd(II) complexes have been studied for the catalytic oxidation of terminal olefins to their corresponding methyl ketones. The method uses aqueous hydrogen peroxide as the terminal oxidant; a sustainable and readily accessible oxidant. The choice of ligand, counterion and solvent all have a significant effect on catalytic performance and we were able to develop systems which perform well for these challenging oxidations.
Resumo:
Methyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2-carboxylate 5, readily available in one step by a 1,3-dipolar cycloaddition, undergoes reduction, cyclisation and fragmentation to the corresponding quinoline when treated with hydrogen and palladium.
Resumo:
Density functional theory has been used to study the adsorption of CH3 on Ni(111). CH3 is found to adsorb strongly at all four high symmetry sites of the Ni(111) surface. Calculated adsorption energies of CH3 on the different sites are in the following order: hcp approximate to fcc>bridge>top. The bonding and structures of CH3 on the different sites are analysed in detail. An important factor, namely three-centre bonding between carbon, hydrogen and nickel which contributes to the 'soft' C-H vibrational frequency of CH3 on Ni(111), and may determine the preferred chemisorption site, is stressed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Aim: Excipients are used to overcome the chemical, physical and microbiological challenges posed by developing formulated medicines. Both methyl and propyl paraben are commonly used in pediatric liquid formulations. There is no data on systemic exposure to parabens in neonates. The European Study of Neonatal Exposure to Excipients project has investigated this. Results & methodology: DBS sampling was used to collect opportunistic blood samples. Parabens were extracted from the DBS and analyzed using a validated LC-MS/MS assay.
Discussion & Conclusion: The above assay was applied to analyze neonatal DBS samples. The blood concentrations of parabens in neonates confirm systemic exposure to parabens following administration of routine medicines.