244 resultados para mesothelioma, lysine acetyltransferase, epigenetics, MG 149, inflammation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims

Public health campaigns recommend increased fruit and vegetable (FV) consumption as an effective means of cardiovascular risk reduction. During an 8 week randomised control trial among hypertensive volunteers, we noted significant improvements in endothelium-dependent vasodilatation with increasing FV consumption. Circulating indices of inflammation, endothelial activation and insulin resistance are often employed as alternative surrogates for systemic arterial health. The responses of several such biomarkers to our previously described FV intervention are reported here.
Methods and results

Hypertensive volunteers were recruited from medical outpatient clinics. After a common 4 week run-in period during which FV consumption was limited to 1 portion per day, participants were randomised to 1, 3 or 6 portions daily for 8 weeks. Venous blood samples for biomarker analyses were collected during the pre and post-intervention vascular assessments. A total of 117 volunteers completed the 12 week study. Intervention-related changes in circulating levels of high sensitivity C-reactive protein (hsCRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) did not differ significantly between FV groups. Similarly, there were no significant between group differences of change in homeostasis model assessment (HOMA) scores.
Conclusions

Despite mediating a significant improvement in acetylcholine induced vasodilatation, increased FV consumption did not affect a calculated measure of insulin resistance or concentrations of the circulating biomarkers measured during this study. Functional indices of arterial health such as endothelium-dependent vasomotion are likely to provide more informative cardiovascular end-points during short-term dietary intervention trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irreversible tissue damage within the cystic fibrosis (CF) lung is mediated by proteolytic enzymes during an inflammatory response. Serine proteinases, in particular neutrophil elastase (NE), have been implicated however, members of the cysteine proteinase family may also be involved. The aim of this study was to determine cathepsin B and S levels in cystic fibrosis (CF) sputum and to assess any relationship to recognized markers of inflammation such as sputum NE, interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-a), urine TNF receptor 1 (TNFr1), plasma IL-6, and serum C-reactive protein (CRP). Proteinase activities were measured in the sputum of 36 clinically stable CF patients using spectrophotometric and fluorogenic assays. Immunoblots were also used to confirm enzyme activity data. All other parameters were measured by ELISA. Patients had a mean age of 27.2 (8.2) years, FEV. of 1.6 (0.79) L and BMI of 20.7 (2.8). Both cathepsin B and S activities were detected in all samples, with mean concentrations of 18.0 (13.5)?µg/ml and 1.6 (0.88)?µg/ml, respectively and were found to correlate not only with each other but with NE, TNF-a and IL-8 (in all cases .?<?0.05). Airway cathepsin B further correlated with circulatory IL-6 and CRP however, no relationship for either cathepsin was observed with urine TNFr1. This data indicates that cathepsin B and S may have important roles in the pathophysiology of CF lung disease and could have potential as markers of inflammation in future studies. Pediatr. Pulmonol. 2010; 45:860–868.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Cyclooxygenase (COX)-2 influences cardiovascular disease and serum concentration of high-sensitivity C-reactive protein (hsCRP). The study purpose was to determine the influence of single nucleotide polymorphisms (SNPs) of the COX-2 gene on abdominal aortic aneurysm (AAA) development and serum hsCRP concentrations. Patients and Methods: Patients with AAA and disease-free controls were recruited. High-sensitivity C-reactive protein was measured by an enzyme-linked immunosorbent assay (ELISA) test. The distributions of COX-2 SNPs were investigated (rs20417 and rs4648307). The influence of the COX-2 SNPs on the hsCRP serum concentration was assessed.Results: A total of 230 patients with AAA and 279 controls were included. No difference was found in the genotype distribution of the COX-2 SNPs rs20417 (P = .26) and rs4648307 (P = .90). They did not influence the hsCRP concentration (P = .24 and P = .61, respectively). Haplotype analysis of COX-2 SNPs revealed no difference. Conclusion: These COX-2 SNPs do not play any role in AAA development and do not influence serum hsCRP. These results differentiate AAA development from atherosclerotic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently, the central nervous system (CNS) has been thought to be an immune privileged organ. However, it is now understood that neuroinflammation is linked with the development of several CNS diseases including late-onset Alzheimer's disease (LOAD). The development of inflammation is a complex process involving a wide array of molecular interactions which in the CNS remains to be further characterized. The development of neuroinflammation may represent an important link between the early stages of LOAD and its pathological outcome. It is proposed that risks for LOAD, which include genetic, biological and environmental factors can each contribute to impairment of normal CNS regulation and function. The links between risk factors and the development of neuroinflammation are numerous and involve many complex interactions which contribute to vascular compromise, oxidative stress and ultimately neuroinflammation. Once this cascade of events is initiated, the process of neuroinflammation can become overactivated resulting in further cellular damage and loss of neuronal function. Additionally, neuroinflammation has been associated with the formation of amyloid plaques and neurofibrillary tangles, the pathological hallmarks of LOAD. Increased levels of inflammatory markers have been correlated with an advanced cognitive impairment. Based on this knowledge, new therapies aimed at limiting onset of neuroinflammation could arrest or even reverse the development of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: There is no effective pharmacological treatment for acute lung injury (ALI). Statins are a potential new therapy because they modify many of the underlying processes important in ALI.

Objectives: To test whether simvastatin improves physiological and biological outcomes in ALI.

Methods: We conducted a randomized, double-blinded, placebo-controlled trial in patients with ALI. Patients received 80 mg simvastatin or placebo until cessation of mechanical ventilation or up to 14 days. Extravascular lung water was measured using thermodilution. Measures of pulmonary and nonpulmonary organ function were assessed daily. Pulmonary and systemic inflammation was assessed by bronchoalveolar lavage fluid and plasma cytokines. Systemic inflammation was also measured by plasma C-reactive protein.

Measurements and Main Results: Sixty patients were recruited. Baseline characteristics, including demographics and severity of illness scores, were similar in both groups. At Day 7, there was no difference in extravascular lung water. By Day 14, the simvastatin-treated group had improvements in nonpulmonary organ dysfunction. Oxygenation and respiratory mechanics improved, although these parameters failed to reach statistical significance. Intensive care unit mortality was 30% in both groups. Simvastatin was well tolerated, with no increase in adverse events. Simvastatin decreased bronchoalveolar lavage IL-8 by 2.5-fold (P = 0.04). Plasma C-reactive protein decreased in both groups but failed to achieve significance in the placebo-treated group.

Conclusions: Treatment with simvastatin appears to be safe and may be associated with an improvement in organ dysfunction in ALI. These clinical effects may be mediated by a reduction in pulmonary and systemic inflammation.




Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Insulin-like growth factor (IGF) axis plays a key role in cell development, proliferation, and survival and is implicated in the etiology of several cancers. Few studies have examined the relationship between genetic variation of this axis and esophageal adenocarcinoma (EAC) or its precursors. METHODS: In a population-based case-control study, we investigated the association of common polymorphisms of IGF-1, IGF-2, IGF-1 receptor, IGF binding protein -3, growth hormones (GH) 1 and GH2, and GH receptor with reflux esophagitis (RE), Barrett esophagus (BE), and EAC. Two hundred and thirty RE, 224 BE, 227 EAC cases, and 260 controls were studied. Gene polymorphisms were identified using publicly available online resources; 102 IGF axis tag and putatively functional single-nucleotide polymorphisms (SNPs) were analyzed using MassARRAY iPLEX and Taqman assays. Results were analyzed using Haploview.
RESULTS: Three polymorphisms were disease-associated. IGF1 SNP rs6214 was associated with BE (adjusted P = .039). Using GG genotype as reference, odds ratio for BE in AA (wild-type) was 0.43 (95% confidence interval [CI], 0.24-0.75). GH receptor SNP rs6898743 was associated with EAC (adjusted P = .0112). With GG as reference, odds ratio for EAC in CC (wildtype) genotype was 0.42 (95% CI, 0.23-0.76). IGF1 (CA)(17) 185-bp allele was associated with RE (adjusted P = .0116). Using IGF1(non17) as reference, odds ratio for RE in IGF1(17) carriers was 7.29 (95% CI, 1.57-46.7).
CONCLUSIONS: In this study, 3 polymorphisms of IGF genes were associated with EAC or its precursors. These polymorphisms may be markers of disease risk; independent validation of our findings is required. These results suggest the IGF pathway is involved in EAC development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.