227 resultados para ionic conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of both UO22+ and trivalent lanthanide and actinide ions (Am3+, Nd3+, Eu3+) by dialkylphosphoric or dialkylphosphinic acids from aqueous solutions into the ionic liquid, 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been studied and compared to extractions into dodecane. Radiotracer partitioning measurements show comparable patterns of distribution ratios for both the ionic liquid/aqueous and dodecane/aqueous systems, and the limiting slopes at low acidity indicate the partitioning of neutral complexes in both solvent systems. The metal ion coordination environment, elucidated from EXAFS and UV-visible spectroscopy measurements, is equivalent in the ionic liquid and dodecane solutions with coordination of the uranyl cation by two hydrogen-bonded extractant dimers, and of the trivalent cations by three extractant dimers. This is the first definitive report of a system where both the biphasic extraction equilibria and metal coordination environment are the same in an ionic liquid and a molecular organic solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF(6)]), and binary mixtures thereof, have been assigned using ab initio MP2 calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF(6)] has provided information on the nature of the hydrogen bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the experimental measurements of the pressure (0.10 <p/MPa <10.0) and temperature (293.15 <T/K <393.15) dependence of the density and derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, the thermal pressure coefficient, and the pressure dependence of the heat capacity of several imidazolium-based ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]; 3-methyl-1-octylimidazolium tetrafluoroborate, [omim][BF4]; 1-hexyl-3-methylimidazolium hexafluorophosphate, [hmim][PF6]; 3-methyl-1-octylimidazolium hexafluorophosphate, [omim][PF6]; 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, [bmmim][PF6]; and 1-butyl-3-methylimidazolium trifluoromethansulfonate, [bmim][CF3SO3]. These ILs were chosen to provide an understanding of the influence of the cation alkyl chain length, the number of cation substitutions, and the anion influence on the properties under study. The influence of water content in the density was also studied for the most hydrophobic IL used, [omim][PF6]. A simple ideal-volume model was employed for the prediction of the imidazolium molar volumes at ambient conditions, which proved to agree well with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental density measurements are reported, and the derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, and the thermal pressure coefficient are presented as Supporting Information for several imidazolium-based ionic liquids (ILs), namely, 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [C2mim][NTf2], 1-heptyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [C7mim][NTf2], 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [C8mim][NTf2], 1-ethyl-3-methyl-imidazolium tetrafluoroborate [C2mim][BF4], and 1-butyl-3-methyl-imidazolium tricyanomethane [C4mim][C(CN)3] in the pressure (0.10 <p/MPa <30.00) and temperature (293.15 <T/K <393.15) domains. These ILs were chosen to provide an understanding of the influence of the cation alkyl chain length and the anion influence on the properties under study. Experimental densities are correlated with the Tait equation with an average absolute deviation (AAD) less than 0.04 %. Experimental densities are in good agreement with the densities obtained by some recent predictive methods proposed in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionic nature of ionic liquids (ILs) results in a unique combination of intrinsic properties that produces increasing interest in the research of these fluids as environmentally friendly "neoteric" solvents. One of the main research fields is their exploitation as solvents for liquid-liquid extractions, but although ILs cannot vaporize leading to air pollution, they present non-negligible miscibility with water that may be the cause of some environmental aquatic risks. It is thus important to know the mutual solubilities between ILs and water before their industrial applications. In this work, the mutual solubilities of hydrophobic yet hygroscopic imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ILs in combination with the anions bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, and tricyanomethane with water were measured between 288.15 and 318.15 K. The effect of the ILs structural combinations, as well as the influence of several factors, namely cation side alkyl chain length, the number of cation substitutions, the cation family, and the anion identity in these mutual solubilities are analyzed and discussed. The hydrophobicity of the anions increases in the order [C(CN)3] <[PF6] <[Tf2N] while the hydrophobicity of the cations increases from [Cnmim] <[Cnmpy] [Cnmpyr] <[Cnmpip] and with the alkyl chain length increase. From experimental measurements of the temperature dependence of ionic liquid solubilities in water, the thermodynamic molar functions of solution, such as Gibbs energy, enthalpy, and entropy at infinite dilution were determined, showing that the solubility of these ILs in water is entropically driven and that the anion solvation at the IL-rich phase controls their solubilities in water. The COSMO-RS, a predictive method based on unimolecular quantum chemistry calculations, was also evaluated for the description of the water-IL binary systems studied, where it showed to be capable of providing an acceptable qualitative agreement with the experimental data.