96 resultados para incompressible fluid
Resumo:
Shape memory NiTi alloys have been used extensively for medical device applications such as orthopedic, dental, vascular and cardiovascular devices on account of their unique shape memory effect (SME) and super-elasticity (SE). Laser welding is found to be the most suitable method used to fabricate NiTi-based medical components. However, the performance of laser-welded NiTi alloys under corrosive environments is not fully understood and a specific focus on understanding the corrosion fatigue behaviour is not evident in the literature. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi alloys using bending rotation fatigue (BRF) test which was integrated with a specifically designed corrosion cell. The testing environment was Hanks’ solution (simulated body fluid) at 37.5oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance at different periods during the BRF test. Experiments indicate that the laser-welded NiTi alloy would be more susceptible to the corrosion fatigue attack than the bare NiTi alloy. This finding can serve as a benchmark for the product designers and engineers to determine the factor of safety of NiTi medical devices fabricated using laser welding.
Resumo:
This paper presents the rational for the selection of fluids for use in a model based study of sub and supercritical Waste Heat Recovery (WHR) Organic Rankine Cycle (ORC). The study focuses on multiple vehicle heat sources and the potential of WHR ORC’s for its conversion into useful work. The work presented on fluid selection is generally applicable to any waste heat recovery system, either stationary or mobile and, with careful consideration, is also applicable to single heat sources. The fluid selection process presented reduces the number of potential fluids from over one hundred to a group of under twenty fluids for further refinement in a model based WHR ORC performance study. The selection process uses engineering judgement, legislation and, where applicable, health and safety as fluid selection or de-selection criteria. This paper also investigates and discusses the properties of specific ORC fluids with regard to their impact on the theoretical potential for delivering efficient WHR ORC work output. The paper concludes by looking at potential temperature and pressure WHR ORC limits with regard to fluid properties thereby assisting with the generation of WHR ORC simulation boundary conditions.
Resumo:
The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.
Resumo:
The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds.
Resumo:
OBJECTIVES: Precision Teaching (PT) has been shown to be an effective intervention to assess teaching method effectiveness and evaluate learning outcomes. SAFMEDS (Say All Fast Minute Every Day Shuffled) are a practice/assessment procedure within the PT framework to assist learning and fluency. We explored the effects of a brief intervention with PT, to impart high frequency performance in safe intravenous fluid prescription in a group of final year undergraduate medical students.
METHODS: 133 final year undergraduate medical students completed a multiple choice question (MCQ) test on safe IV fluid prescription at the beginning and end of the study. The control group (n= 76) of students were taught using a current standardized teaching method. Students allocated to the intervention arm of the study were additionally instructed on PT and the use of SAFMEDS. The study group (n = 57) received 50 SAFMEDS cards containing information on the principles of IV fluid prescription scenarios. These students were trained/tested twice per day for 1 minute.
RESULTS: Interim analysis showed that the study group displayed an improvement in fluency and accuracy as the study progressed. There was a statistically significant improvement in MCQ performance for the PT group compared with the control group between the beginning and end of the study (35% vs 15%).
CONCLUSION: These results suggest PT employing SAFMEDS is an effective method for improving fluency, accuracy and patient safety in intravenous fluid prescribing amongst undergraduate medical students.
Resumo:
Introduction: In this cohort study, we explored the relationship between fluid balance, intradialytic hypotension and outcomes in critically ill patients with acute kidney injury (AKI) who received renal replacement therapy (RRT).
Methods: We analysed prospectively collected registry data on patients older than 16 years who received RRT for at least two days in an intensive care unit at two university-affiliated hospitals. We used multivariable logistic regression to determine the relationship between mean daily fluid balance and intradialytic hypotension, both over seven days following RRT initiation, and the outcomes of hospital mortality and RRT dependence in survivors.
Results: In total, 492 patients were included (299 male (60.8%), mean (standard deviation (SD)) age 62.9 (16.3) years); 251 (51.0%) died in hospital. Independent risk factors for mortality were mean daily fluid balance (odds ratio (OR) 1.36 per 1000 mL positive (95% confidence interval (CI) 1.18 to 1.57), intradialytic hypotension (OR 1.14 per 10% increase in days with intradialytic hypotension (95% CI 1.06 to 1.23)), age (OR 1.15 per five-year increase (95% CI 1.07 to 1.25)), maximum sequential organ failure assessment score on days 1 to 7 (OR 1.21 (95% CI 1.13 to 1.29)), and Charlson comorbidity index (OR 1.28 (95% CI 1.14 to 1.44)); higher baseline creatinine (OR 0.98 per 10 mu mol/L (95% CI 0.97 to 0.996)) was associated with lower risk of death. Of 241 hospital survivors, 61 (25.3%) were RRT dependent at discharge. The only independent risk factor for RRT dependence was pre-existing heart failure (OR 3.13 (95% CI 1.46 to 6.74)). Neither mean daily fluid balance nor intradialytic hypotension was associated with RRT dependence in survivors. Associations between these exposures and mortality were similar in sensitivity analyses accounting for immortal time bias and dichotomising mean daily fluid balance as positive or negative. In the subgroup of patients with data on pre-RRT fluid balance, fluid overload at RRT initiation did not modify the association of mean daily fluid balance with mortality.
Conclusions: In this cohort of patients with AKI requiring RRT, a more positive mean daily fluid balance and intradialytic hypotension were associated with hospital mortality but not with RRT dependence at hospital discharge in survivors.
Resumo:
A range of lanthanum strontium manganates (La1−xSrxMnO3–LSMO) where 0 ≤ x < 0.4 were prepared using a modified peroxide sol–gel synthesis method. The magnetic nanoparticle (MNP) clusters obtained for each of the materials were characterised using scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and infra-red (IR) spectroscopy in order to confirm the crystalline phases, crystallite size and cluster morphology. The magnetic properties of the materials were assessed using the Superconducting quantum interference device (SQUID) to evaluate the magnetic susceptibility, Curie temperature (Tc) and static hysteretic losses. Induction heating experiments also provided an insight into the magnetocaloric effect for each material. The specific absorption rate (SAR) of the materials was evaluated experimentally and via numerical simulations. The magnetic properties and heating data were linked with the crystalline structure to make predictions with respect to the best LSMO composition for mild hyperthermia (41 °C ≤ T ≤ 46 °C). La0.65Sr0.35MnO3, with crystallite diameter of 82.4 nm, (agglomerate size of ∼10 μm), Tc of 89 °C and SAR of 56 W gMn−1 at a concentration 10 mg mL−1 gave the optimal induction heating results (Tmax of 46.7 °C) and was therefore deemed as most suitable for the purposes of mild hyperthermia, vide infra.
Resumo:
A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VPVP for the embankment structure. To directly compare the reconstructed VPVP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VPVP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site.