134 resultados para historic sites
Resumo:
The exposure of historic stone to processes of lichen-induced surface biomodification is determined, first and foremost, by the bioreceptivity of those surfaces to lichen colonization. As an important component of surface bioreceptivity, spatiotemporal variation in stone surface temperature plays a critical role in the spatial distribution of saxicolous lichen on historic stone structures, especially within seasonally hot environments. The ornate limestone and tufa stairwell of the Monastery of Cartuja (1516), Granada, Spain, exhibits significant aspect-related differences in lichen distribution. Lichen coverage and
diurnal fluctuations in stone surface temperature on the stairwell were monitored and mapped, under anticyclonic conditions in summer and winter, using an infrared thermometer and Geographical Information Systems approach. This research suggests that it is not extreme high surface temperatures that
determine the presence or absence of lichen coverage on stonework. Instead, average stone surface temperatures
over the course of the year seem to play a critical role in determining whether or not surfaces are receptive to lichen colonization and subsequent biomodification. It is inferred that lichen, capable of surviving extreme surface temperatures during the Mediterranean summer in an ametabolic state, require a respite period of lower temperatures within which they can metabolize, grow and reproduce.
The higher the average annual temperature a surface experiences, the shorter the respite period for any lichen potentially inhabiting that surface. A critical average temperature threshold of approximately 21 ?C has been identified on the stairwell, with average stone surface temperatures greater than this
generally inhibiting lichen colonization. A brief visual condition assessment between lichen-covered and lichen-free surfaces on the limestone sections of the stairwell suggests relative bioprotection induced by lichen coverage, with stonework quality and sharpness remaining more defined beneath lichen-covered surfaces. The methodology employed in this paper may have further applications in the monitoring and mapping of thermal stress fatigue on historic building materials.
Resumo:
Climate change, whether gradual or sudden, has frequently been invoked as a causal factor to explain many aspects of cultural change during the prehistoric and early historic periods. Critiquing such theories has often proven difficult, not least because of the imprecise dating of many aspects of the palaeoclimate or archaeological records and the difficulties of merging the two strands of research. Here we consider one example of the archaeological record – peatland site construction in Ireland – which has previously been interpreted in terms of social response to climate change and examine whether close scrutiny of the archaeological and palaeoenvironmental records uphold the climatically deterministic hypotheses. We evaluate evidence for phasing in the temporal distribution of trackways and related sites in Irish peatlands, of which more than 3,500 examples have been recorded, through the examination of ~350 dendrochronological and 14C dates from these structures. The role of climate change in influencing when such sites were constructed is assessed by comparing visually and statistically the frequency of sites over the last 4,500 years with well-dated, multi-proxy climate reconstructions from Irish peatlands. We demonstrate that national patterns of “peatland activity” exist that indicate that the construction of sites in bogs was neither a constant nor random phenomenon. Phases of activity (i.e. periods in which the number of structures increased), as well as the ‘lulls’ that separate them, show no consistent correlation with periods of wetter or drier conditions on the bogs, suggesting that the impetus for the start or cessation of such activity was not climatically-determined. We propose that trigger(s) for peatland site construction in Ireland must instead also be sought within the wider, contemporary social background. Perhaps not surprisingly, a comparison with archaeological and palynological evidence shows that peatland activity tends to occur at times of more expansive settlement and land-use, suggesting that the bogs were used when the landscape was being more widely occupied. Interestingly, the lulls in peatland site construction coincide with transitional points between nominal archaeological phases, typically defined on the basis of their material culture, implying that there may indeed have been a cultural discontinuity at these times. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.
Resumo:
• Inorganic arsenic (As(i) ) in rice (Oryza sativa) grains is a possible threat to human health, with risk being strongly linked to total dietary rice consumption and consumed rice As(i) content. This study aimed to identify the range and stability of genetic variation in grain arsenic (As) in rice. • Six field trials were conducted (one each in Bangladesh and China, two in Arkansas, USA over 2 yr, and two in Texas, USA comparing flooded and nonflood treatments) on a large number of common rice cultivars (c. 300) representing genetic diversity among international rice cultivars. • Within each field there was a 3-34 fold range in grain As concentration which varied between rice subpopulations. Importantly, As(i) correlated strongly with total As among a subset of 40 cultivars harvested in Bangladesh and China. • Genetic variation at all field sites was a large determining factor for grain As concentration, indicating that cultivars low in grain As could be developed through breeding. The temperate japonicas exhibited lower grain As compared with other subpopulations. Effects for year, location and flooding management were also statistically significant, suggesting that breeding strategies must take into account environmental factors.
Resumo:
The concentration of arsenic (As) in rice grains has been identified as a risk to human health. The high proportion of inorganic species of As (As(i)) is of particular concern as it is a nonthreshold, class 1 human carcinogen. To be able to breed rice with low grain As, an understanding of genetic variation and the effect of different environments on genetic variation is needed. In this study, 13 cultivars grown at two field sites each in Bangladesh, India, and China are evaluated for grain As. There was a significant site, genotype, and site by genotype interaction for total grain As. Correlations were observed only between sites in Bangladesh and India, not between countries or within the Chinese sites. For seven cultivars the As was speciated which revealed significant effects of site, genotype, and site by genotype interaction for percentage As(i). Breeding low grain As cultivars that will have consistently low grain As and low As(i), over multiple environments using traditional breeding approaches may be difficult, although CT9993-5-10-1-M, Lemont, Azucena, and Te-qing in general had low grain As across the field sites.
Resumo:
Arsenic can be highly toxic to mammals but there is relatively little information on its transfer to and uptake by free-living small mammals. The aim of this study was to determine whether intake and accumulation of arsenic by wild rodents living in arsenic-contaminated habitats reflected environmental levels of contamination and varied between species, sexes and age classes. Arsenic concentrations were measured in soil, litter, wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from six sites which varied in the extent to which they were contaminated. Arsenic residues on the most contaminated sites were three and two orders of magnitude above background in soil and litter, respectively. Arsenic concentrations in the stomach contents, liver, kidney and whole body of small mammals reflected inter-site differences in environmental contamination. Wood mice and bank voles on the same sites had similar concentrations of arsenic in their stomach contents and accumulated comparable residues in the liver, kidney and whole body. Female bank voles, but not wood mice, had significantly higher stomach content and liver arsenic concentrations than males. Arsenic concentration in the stomach contents and body tissues did not vary with age class. The bioaccumulation factor (ratio of arsenic concentration in whole body to that in the diet) in wood mice was not significantly different to that in bank voles and was 0.69 for the two species combined, indicating that arsenic was not bioconcentrated in these rodents. Overall, this study has demonstrated that adult and juvenile wood mice and bank voles are exposed to and accumulate similar amounts of arsenic on arsenic-contaminated mine sites and that the extent of accumulation depends upon the level of habitat contamination.
Resumo:
A series of iron containing zeolites with varying Si/Al ratios (11.5-140) and low iron content (similar to 0.9 wt.% Fe) have been synthesised by solid-state ion exchange with commercially available zeolites and tested, for the first time, in the oxidative dehydrogenation of propane (ODHP) with N2O. The samples were characterised by XRD, N-2-Adsorption, NH3-TPD and DR-UV-vis spectroscopy. The acidity of the Fe-ZSM-5 can be controlled by high temperature and steam treatments and Si/Al ratio. The selectivity and yield of propene were found to be the highest over Fe-ZSM-5 with low Al contents and reduced acidity. The initial propene yield over Fe-ZSM-5 was significantly higher than that of Fe-SiO2 since the presence of weak and/or medium acid sites together with oligonuclear iron species and iron oxides on the ZSM-5 are found to enhance the N2O activation. The coking of Fe-ZSM-5 catalysts could also be controlled by reduction of the surface acidity of ZSM-5 and by the use of O-2 in addition to N2O as the oxidant. Fe-ZSM-5 zeolites prepared with solid-state method have been shown to have comparable activity and better stability towards coking compared with Fe-ZSM-5 zeolites prepared by liquid ion exchange and hydrothermal synthesis methods. (C) 2012 Elsevier B.V. All rights reserved.