80 resultados para high-flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle – the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters.
Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model.
Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle.
The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this single centre study of childhood acute lymphoblastic leukaemia (ALL) patients treated on the Medical Research Council UKALL 97/99 protocols, it was determined that minimal residual disease (MRD) detected by real time quantitative polymerase chain reaction (RQ-PCR) and 3-colour flow cytometry (FC) displayed high levels of qualitative concordance when evaluated at multiple time-points during treatment (93.38%), and a combined use of both approaches allowed a multi time-point evaluation of MRD kinetics for 90% (53/59) of the initial cohort. At diagnosis, MRD markers with sensitivity of at least 0.01% were identified by RQ-PCR detection of fusion gene transcripts, IGH/TRG rearrangements, and FC. Using a combined RQ-PCR and FC approach, the evaluation of 367 follow-up BM samples revealed that the detection of MRD >1% at Day 15 (P = 0.04), >0.01% at the end of induction (P = 0.02), >0.01% at the end of consolidation (P = 0.01), >0.01% prior to the first delayed intensification (P = 0.01), and >0.1% prior to the second delayed intensification and continued maintenance (P = 0.001) were all associated with relapse and, based on early time-points (end of induction and consolidation) a significant log-rank trend (P = 0.0091) was noted between survival curves for patients stratified into high, intermediate and low-risk MRD groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute respiratory infections are the leading cause of global child mortality. In the developing world, nasal oxygen therapy is often the only treatment option for babies who are suffering from respiratory distress. Without the added pressure of bubble Continuous Positive Airway Pressure (bCPAP) which helps maintain alveoli open, babies struggle to breathe and can suffer serious complications, and frequently death. A stand-alone bCPAP device can cost $6,000, too expensive for most developing world hospitals. Here, we describe the design and technical evaluation of a new, rugged bCPAP system that can be made in small volume for a cost-of-goods of approximately $350. Moreover, because of its simple design--consumer-grade pumps, medical tubing, and regulators--it requires only the simple replacement of a <$1 diaphragm approximately every 2 years for maintenance. The low-cost bCPAP device delivers pressure and flow equivalent to those of a reference bCPAP system used in the developed world. We describe the initial clinical cases of a child with bronchiolitis and a neonate with respiratory distress who were treated successfully with the new bCPAP device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients often spend time as inpatients in hospitals outside their home area because of the need to access specialist services. If there is a need for ongoing care after the need for specialist care has passed, patients are transferred (or ‘repatriated’) back to the inpatient care of a hospital in their local Health and Social Care Trust. The need for bed space in specialist units means that there is pressure for this transition to occur in a timely way. We investigated the flow of patients through a trauma and orthopaedics unit using the 6M Design® framework and Vitals Charts® in order to investigate concerns about delayed repatriation. We found that repatriation was part of a complex system that had interdependent components. There was considerable variation in the number of discharges (to any destination) by day of week, with a reduction on Saturdays and Sundays. Understanding that the pressure for quicker repatriation was really due to high work-in-progress led us to model the effects of strategies to address the high work-in-progress. We found that, because only a small proportion of patients require repatriation, expediting the repatriation process by one day for each patient would only reduce WIP by an average of 1.6 patients. Reducing the average length of stay for all trauma and orthopaedics inpatients by one day would reduce the WIP by 10 patients, which would make a much greater impact on the problem of high bed occupancy. Though the smooth and timely repatriation of patients to rehabilitation units is desirable, it is unlikely that efforts to achieve this will have a substantial impact on the problem of high WIP, so other strategies will be required. We will model the effects of strategies to reduce variation in daily discharges by the day of week in a future essay.