139 resultados para halo nuclei
Resumo:
Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.
Resumo:
We present an experimental demonstration of nonresonant manipulation of vibrational states in a molecule by an intense ultrashort laser pulse. A vibrational wave packet is generated in D-2(+) through tunnel ionization of D-2 by a few-cycle pump pulse. A similar control pulse is applied as the wave packet begins to dephase so that the dynamic Stark effect distorts the electronic environment of the nuclei, transferring vibrational population. The time evolution of the modified wave packet is probed via the D-2(+) photodissociation yield that results from the application of an intense probe pulse. Comparing the measured yield with a quasiclassical trajectory model allows us to determine the redistribution of vibrational population caused by the control pulse. ©
Resumo:
The proton NMR spectra of aryl n-propyl sulfides gave rise to what may appear to be first-order proton NMR spectra. Upon oxidation to the corresponding sulfone, the spectra changed appearance dramatically and were clearly second-order. A detailed analysis of these second-order spectra, in the sulfone series, provided vicinal coupling constants which indicated that these compounds had a moderate preference for the anti-conformer, reflecting the much greater size of the sulfone over the sulfide. It also emerged, from this study, that the criterion for observing large second-order effects in the proton NMR spectra of 1,2-disubstituted ethanes was that the difference in vicinal coupling constants must be large and the difference in geminal coupling constants must be small. n-Propyl triphenylphosphonium bromide and 2-trimethylsilylethanesulfonyl chloride, and derivatives thereof, also exhibited second-order spectra, again due to the bulky substituents. Since these spectra are second-order due to magnetic nonequivalence of the nuclei in question, not chemical shifts, the proton spectra are perpetually second-order and can never be rendered first-order by using higher field NMR spectrometers.
Resumo:
We describe a detailed depth-and time-dependent model of the molecular cloud associated with the ultracompact H II region G 34.3+0.15. Previous work on observations of NH3 and CS indicates that the molecular cloud has three distinct physical components:- an ultracompact hot core, a compact hot core and an extended halo. We have used the physical parameters derived from these observations as input to our detailed chemical kinetic modelling. The results of the model calculations are discussed with reference to the different chemistries occuring in each component and are compared with abundances derived from our recent spectral line survey of G 34.3+0.15 (Paper I).
Resumo:
Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)(2)](+), where cycb = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate( III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates.
Resumo:
Nanocrystalline TiO2 deposited on conducting glass plates is shown to be an excellent material for preconcentration of silver and mercury, via photochemical reaction, prior to their detection by anodic stripping voltammetry (ASV). During the first stage of growth in the photoreduction of silver or mercury, 3D nuclei are formed on the TiO2 film. As the deposition proceeds micrometer size agglomerates grow on the surface. The conical morphology of the silver nuclei grown on a (110) rutile single crystal in the initial stages of growth suggests that there is a preferential deposition of silver at the centre of the growing nuclei. When the nuclei size reach a critical value (ca. 400 nm diameter, 40 nm height) the morphology changes to a globular shape without any preferential site for deposition on the surface of the silver nucleus. It was observed that micromolar concentrations of silver or mercury can be detected by anodic stripping voltammetry and relatively large amounts of these metals (micrometer scale nuclei) can be loaded on the nanocrystalline TiO2 film surface. The latter opens the possibility of analytical applications of nanocrystalline TiO2 electrodes for the selective detection of silver or mercury via photochemical anodic stripping voltammetry.
Resumo:
Ultrastructural changes to the tegument of 5-week-old, 3-week-old and freshly-excysted Fasciola hepatica following in vitro incubation with the deacetylated (amine) metabolite of diamphenethide (DAMD, 10 mu gml(-1)) were examined by transmission electron microscopy, A similar sequence of tegumental changes occurred in all three age groups of fluke, although, with increasing fluke age, the time before onset increased and the damage became more extensive. The 5-week-old flukes showed an initial stress response after 3 h, typified by blebbing of the apical plasma membrane, formation of microvilli and an accumulation and accelerated release of secretory bodies at the tegumental apex, as well as swelling of the basal infolds, The swelling increased in extent with progressively longer periods of incubation in DAMD, leading to extreme edema and sloughing of the tegument after 9 h. The 3-week-old flukes showed a stress response and swelling of the basal infolds after only 1.5 h, although sloughing of the tegument did not occur until after 9 h. In the freshly-excysted metacercaria, a stress response and some sloughing of the tegument were evident after only 0.5 h. At all stages of development, the ventral tegument was more severely affected than the dorsal, Changes also occurred to the tegumental cells which were indicative of a disruption in the synthesis and release of tegumental secretory bodies: the amount of GER became reduced, the cisternae became swollen and their ribosomal covering decreased, the Golgi complexes disappeared from the cells and the numbers of secretory bodies in the cells also decreased, The heterochromatin content of the nuclei increased and eventually the tegumental cells began to break down, Again, the changes became apparent more rapidly at the earlier stages of development. The ultrastructural changes to the tegument are linked to a possible mode of action for diamphenethide as an inhibitor of protein synthesis. In turn, the results may help to explain the drug's high efficacy against juvenile stages of F. hepatica.
Resumo:
The POINT-AGAPE collaboration is carrying out a search for gravitational microlensing toward M31 to reveal galactic dark matter in the form of MACHOs (Massive Astrophysical Compact Halo Objects) in the halos of the Milky Way and M31. A high-threshold analysis of 3 years of data yields 6 bright, short- duration microlensing events, which are confronted to a simulation of the observations and the analysis. The observed signal is much larger than expected from self lensing alone and we conclude, at the 95% confidence level, that at least 20% of the halo mass in the direction of M31 must be in the form of MACHOs if their average mass lies in the range 0.5-1 M-circle dot. This lower bound drops to 8% for MACHOs with masses similar to 0.01 M-circle dot. In addition, we discuss a likely binary microlensing candidate with caustic crossing. Its location, some 32' away from the centre of M31, supports our conclusion that we are detecting a MACHO signal in the direction of M31.
Resumo:
The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.
Resumo:
The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of similar to2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.
Resumo:
We report the discovery of a short-duration microlensing candidate in the northern field of the POINT-AGAPE pixel lensing survey toward M31. Almost certainly, the source star has been identified on Hubble Space Telescope archival images, allowing us to infer an Einstein crossing time of t(E) = 10.4 days, a maximum magnification of A(max) similar to 18, and a lens-source proper motion mu (rel) > 0.3 mu as day(-1). The event has a projected separation of 8' from the center of M31, beyond the bulk of the stellar lens population. There are three plausible identifications/locations for the lensing object: a massive compact halo object (MACHO) in either M31 or the Milky Way, or a star in the M31 disk. The most probable mass is 0.06 M-. for an M31 MACHO, 0.02 M-. for a Milky Way MACHO, and 0.2 M-. for an M31 stellar lens. While the stellar interpretation is possible, the MACHO interpretation is the most probable for halo fractions above 20%.
Resumo:
POINT-AGAPE is an Angle-French collaboration which is employing the Isaac Newton Telescope (INT) to conduct a pixel-lensing survey towards M31. Pixel lensing is a technique which permits the detection of microlensing against unresolved stellar fields. The survey aims to constrain the stellar population in M31, and also the distribution and nature of massive compact halo objects (MACHOs) in both M31 and the Galaxy.
Resumo:
White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested(1,2) to make up much of the 'dark matter' in the halo of the Milky way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models(3-5) indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.
Resumo:
The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of mu m-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given.
A nearly real-time high temperature laser-plasma diagnostic using photonuclear reactions in tantalum
Resumo:
A method of measuring the temperature of the fast electrons produced in ultraintense laser-plasma interactions is described by inducing photonuclear reactions, in particular (gamma,n) and (gamma,3n) reactions in tantalum. Analysis of the gamma rays emitted by the daughter nuclei of these reactions using a germanium counter enables a relatively straightforward near real-time temperature measurement to be made. This is especially important for high temperature plasmas where alternative diagnostic techniques are usually difficult and time consuming. This technique can be used while other experiments are being conducted. (C) 2002 American Institute of Physics.