181 resultados para fusion technologies
Resumo:
Heavy metals, primarily zinc, copper, lead, and chromium, and Polycyclic Aromatic Hydrocarbons (PAHs) are the main hazardous constituents of road runoff. The main sources of these contaminants are vehicle emission, mostly through wear and leakage, although erosion of the road surface and de-icing salts are also recognised pollution sources. The bioavailability of these toxic compounds, and more importantly their potential biomagnification along food chains, could affect aquatic communities persistently exposed to road runoff. Several internationally approved abatement technologies are available for the management of road runoff on new motorway schemes. Recent studies conducted in Cork and Dublin, Ireland demonstrated the efficacy of infiltration trenches as abatement technologies in the removal of both heavy metals and PAHs prior to discharge; the technology was however inefficient in mitigating first flush events. Gully traps with sedimentation chambers, another technology investigated, demonstrated to have a substantially lower removal potential but appeared to be more effective in attenuating surges of contaminants attributed to first flush events. Consequently the employment of combined abatement techniques could efficiently minimise deviations from required effluent concentrations. The studies determined a relatively stationary accumulation of heavy metals and PAHs in sediments close to the point of discharge with a rapid decline in concentration in nearby downstream sediments (<50m). Further, Microtox® Solid Phase testing reported a negligible impact on assemblages exposed to contaminated sediments for all sites investigated. This paper describes pollutant loading from road runoff and mitigation measures from a freshwater deterioration in a water quality perspective. The results and analysis of field samples collected adjacent to a number of roads and motorways in Ireland is also presented. Finally sustainable drainage systems, abatement techniques and technologies available for onsite treatment of runoff are presented to improve and mitigate impacts of vehicular transport on the environment.
Resumo:
The growth of renewable power sources, distributed generation and the potential for alternative fuelled modes of transport such as electric vehicles has led to concerns over the ability of existing grid systems to facilitate such diverse portfolio mixes in already congested power systems. Internationally the growth in renewable energy sources is driven by government policy targets associated with the uncertainties of fossil fuel supplies, environmental issues and a move towards energy independence. Power grids were traditionally designed as vertically integrated centrally managed entities with fully dispatchable generating plant. Renewable power sources, distributed generation and alternative fuelled vehicles will place these power systems under additional stresses and strains due to their different operational characteristics. Energy storage and smart grid technologies are widely proposed as the tools to integrate these future diverse portfolio mixes within the more conventional power systems. The choice in these technologies is determined not only by their location on the grid system, but by the diversification in the power portfolio mix, the electricity market and the operational demands. This paper presents a high level technical and economic overview of the role and relevance of electrical energy storage and smart grid technologies in the next generation of renewable power systems.
Resumo:
A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.
Resumo:
We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.
Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs
Resumo:
We present a new approach to indirect-drive inertial confinement fusion which makes use of highly supersonic, radiatively cooled, slugs of plasma to energize a hohlraum. 2D resistive magnetohydrodynamic simulations of slug formation in shaped liner Z -pinch implosions are presented along with 2D-radiation-hydrodynamic simulations of the slug impacting a converter foil and 3D-view-factor simulations of a double-ended hohlraum. Results for the Z facility at Sandia National Laboratory indicate that two synchronous slugs of 250 kJ kinetic energy could be produced, resulting in a capsule surface temperature of similar to225 eV .
Resumo:
This paper explores the roles of science and market devices in the commodification of ‘nature’ and the configuration of flows of speculative capital. It focuses on mineral prospecting and the market for shares in ‘junior’ mining companies. In recent years these companies have expanded the reach of their exploration activities overseas, taking advantage of innovations in exploration methodologies and the liberalisation of fiscal and property regimes in ‘emerging’ mineral rich developing countries. Recent literature has explored how the reconfiguration of notions of ‘risk’ has structured the uneven distribution of rents. It is increasingly evident that neoliberal framing of environmental, political, social and economic risks has set in motion overflows that multinational mining capital had not bargained for (e.g. nationalisation, violence and political resistance). However, the role of ‘geological risk’ in animating flows of mining finance is often assumed as a ‘technical’ given. Yet geological knowledge claims, translated locally, designed to travel globally, assemble heterogeneous elements within distanciated regimes of metrology, valuation and commodity production. This paper explores how knowledge of nature is enrolled within systems of property relations, focusing on the genealogy of the knowledge practices that animate contemporary circuits of speculative mining finance. It argues that the financing of mineral prospecting mobilises pragmatic and situated forms of knowledge rather than actuarially driven calculations that promise predictability. A Canadian public enquiry struck in the wake of scandal associated with Bre-X’s prospecting activities in Indonesia is used to glean insights into the ways in which the construction of a system of public warrant to underpin financial speculation is predicated upon particular subjectivities and the outworking of everyday practices and struggles over ‘value’. Reflection on practical investments in processes of standardisation, rituals of verification and systems of accreditation reveal much about how the materiality of things shape the ways in which regional and global financial circuits are integrated, selectively transforming existing social relations and forms of knowledge production.
Resumo:
The Kyoto Protocol and the European Energy Performance of Buildings Directive put an onus on governments
and organisations to lower carbon footprint in order to contribute towards reducing global warming. A key
parameter to be considered in buildings towards energy and cost savings is its indoor lighting that has a major
impact on overall energy usage and Carbon Dioxide emissions. Lighting control in buildings using Passive
Infrared sensors is a reliable and well established approach; however, the use of only Passive Infrared does not
offer much savings towards reducing carbon, energy, and cost. Accurate occupancy monitoring information can
greatly affect a building’s lighting control strategy towards a greener usage. This paper presents an approach for
data fusion of Passive Infrared sensors and passive Radio Frequency Identification (RFID) based occupancy
monitoring. The idea is to have efficient, need-based, and reliable control of lighting towards a green indoor
environment, all while considering visual comfort of occupants. The proposed approach provides an estimated
13% electrical energy savings in one open-plan office of a University building in one working day. Practical
implementation of RFID gateways provide real-world occupancy profiling data to be fused with Passive
Infrared sensing towards analysis and improvement of building lighting usage and control.