139 resultados para entrainment mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria caused by several species of Plasmodium is major parasitic disease of humans, causing 1-3 million deaths worldwide annually. The widespread resistance of the human parasite to current drug therapies is of major concern making the identification of new drug targets urgent. While the parasite grows and multiplies inside the host erythrocyte it degrades the host cell hemoglobin and utilizes the released amino acids to synthesize its own proteins. The P. falciparum malarial M1 alanyl-aminopeptidase (PfA-M1) is an enzyme involved in the terminal stages of hemoglobin digestion and the generation of an amino acid pool within the parasite. The enzyme has been validated as a potential drug target since inhibitors of the enzyme block parasite growth in vitro and in vivo. In order to gain further understanding of this enzyme, molecular dynamics simulations using data from a recent crystal structure of PfA-M1 were performed. The results elucidate the pentahedral coordination of the catalytic Zn in these metallo-proteases and provide new insights into the roles of this cation and important active site residues in ligand binding and in the hydrolysis of the peptide bond. Based on the data, we propose a two-step catalytic mechanism, in which the conformation of the active site is altered between the Michaelis complex and the transition state. In addition, the simulations identify global changes in the protein in which conformational transitions in the catalytic domain are transmitted at the opening of the N-terminal 8 angstrom-long channel and at the opening of the 30 angstrom-long C-terminal internal chamber that facilitates entry of peptides to the active site and exit of released amino acids. The possible implications of these global changes with regard to enzyme function are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scission of a supramolecular polymer-metal complex can be carried out using collapsing cavitation bubbles created by ultrasound. Although the most plausible scission mechanism of the coordinative bonds is through mechanical force, the influence of radicals and high hot-spot temperatures on scission has to be considered. A silver(I)-N-heterocyclic carbene complex was exposed to 20 kHz ultrasound in argon, nitrogen, methane, and isobutane saturated toluene. Scission percentages were almost equal under argon, nitrogen, and methane. Radical production differs by a factor of 10 under these gases, indicating that radical production is not a significant contributor to the scission process. A model to describe the displacement of the bubble wall, strain rates, and temperature in the gas shows that critical strain rates for coil-to-stretch transition, needed for scission, are achieved at reactor temperatures of 298 K, an acoustic pressure of 1.2 x 10(5) Pa, and an acoustic frequency of 20 kHz. Lower scission percentages were measured under isobutane, which also shows lower strain rates in model simulations. The activation of the polymer-metal complexes in toluene under the influence of ultrasound occurs through mechanical force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)(2)](+), where cycb = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate( III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of a fast leuco-Methylene Blue (LMB) re-oxidation to Methylene Blue (MB) by copper(II)-halide (Cl-, Br-) complexes in acidic aqueous media has been studied spectrophotometrically using a stopped-flow technique. The reaction follows a simple first order rate expression under an excess of the copper(II) species (and H+(aq)), and the pseudo-first order rate constant (k'(obs)) is largely independent of the atmosphere used (air, oxygen, argon). The rate law, at constant Cl- (Br-) anion concentration, is given by the expression: (d[MB+])/dt = ((k(a)K[H+] + k(b))/(1 + K[H+])).[Cu-II][LMB] = k'(obs)[LMB], where K is the protonation constant, and k(a) and k(b) are the pseudo-second order rate constants for protonated and deprotonated forms of LMB, respectively The rate law was determined based on the observed k'(obs) vs. [Cu-II] and [H+] dependences. The rate dramatically increases with [Cl-] over the range: 0.1-1.5 M, reflecting the following reactivity order: Cu2+(aq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of oxidation of reduced methyl viologen (MV+4) by water, catalyzed by colloidal Pt/Al2O3, is reduced by a factor of congruent-to 5 when D2O is used as a solvent rather than H2O in the presence of a pH 4.40 acetate buffer. In contrast, the rate measured in the presence of a pH 3.05 buffer is reduced only slightly when D2O replaces H2O. H/D isotope separation factors for the methyl viologen mediated reduction of water to hydrogen catalyzed by Pt/Al2O3 are 4.22 (+/- 0.15) at pH 4.40 and 5.99 (+/- 0.11) at pH 3.05, at 25-degrees-C. These data are interpreted in terms of the electrochemical model for metal-catalyzed redox reactions with a pH-dependent mechanism for the hydrogen-evolving reaction. It is proposed that hydrogen atom combination on the catalyst surface is the rate-limiting step at pH 4.40, whereas at pH 3.05 diffusion of MV2+4 is rate limiting and hydrogen evolution proceeds via the electrochemical reaction between a surface-adsorbed hydrogen atom and a solution-phase proton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gamma subunits of heterotrimeric G proteins are isoprenylated/methylated on their carboxy termini. The photoreceptor G protein, transducin, is farnesylated/methylated at this position. Since the isoprenyl group is required for G protein function, it is of great interest to determine the mechanism by which the farnesyl group of T gamma interacts with the other transducin subunits and/or the activated photoreceptor, rhodopsin. Farnesylcysteine derivatives (N-acetyl-S-farnesyl-L-cysteine and farnesylated peptides) have been previously shown to have effects on transducin activity at high concentrations. Here, an extensive survey is done of farnesylcysteine analogs and other lipid molecules, which are tested for their ability to inhibit GTP/GDP exchange in transducin catalyzed by photolyzed rhodopsin. These studies are carried out to determine the nature of the inhibition process. While it does not appear that these molecules exhibit the specificity which would characterize a ligand-receptor type mechanism, the results suggest that these compounds are not acting in a nonspecific detergent-like manner either. The most likely mode of action of farnesylcysteine analogs is that they interfere with the lipid-lipid based association of T alpha and T beta gamma through the lipid modifications present on each subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin penetration enhancement effect of ultrasound (phonophoresis) on methyl nicotinate was investigated in 10 healthy volunteers in a double-blind, placebo-controlled, crossover clinical trial. Each treatment consisted of the application of ultrasound massage (3.0 MHz, 1.0 W/cm2 continuous output) or placebo massage (0 MHz) for 5 min to the forearms of the volunteers, followed by a standardized application of methyl nicotinate at intervals of 15 sec, 1 min, and 2 min postmassage. Percutaneous absorption of methyl nicotinate was monitored using laser Doppler velocimetry. Ultrasound treatment applied prior to methyl nicotinate led to enhanced percutaneous absorption of the drug, for example, ultrasound treatment data versus control data at 2 min showed significant increases (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism for eggshell production in Schistosoma mansoni has been proposed (Wells & Cordingley, 1991), and suggests that the release of eggshell protein globules from the vitelline cells occurs under alkaline conditions within the ootype followed by their subsequent fusion to form the eggshell. Fusion and tanning of these components produces eggshell which autofluoresces. The present study was carried out to determine whether a similar process operates in Fasciola hepatica. A number of drug treatments were used to disrupt key steps in the maturation of vitelline cells. Treatment with the calcium ionophore lasalocid (1 x 10(-5) M) led to the premature release of eggshell globules from the vitelline cells but not their fusion. Incubation in monensin (1 x 10(-6) M), a sodium ionophore and ammonium chloride (NH4Cl) (5 x 10(-2) M), a weak base, resulted in the premature fusion of eggshell protein globules within the vitelline cells and premature tanning of the eggshell protein material. The copper-containing enzyme, phenol oxidase, is thought to be involved in the tanning process during the production of eggs. Diethyldithiocarbamate (DDC, 1 x 10(-3) M) is a phenol oxidase inhibitor and treatment with this compound, in combination treatments with monensin and NH4Cl, prevented fusion of the vitelline cell globules and tanning of the shell protein material. The results of the study suggest that the mechanism for eggshell formation in F. hepatica is similar to that proposed for S. mansoni and may be common to other trematodes as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.

Relevância:

20.00% 20.00%

Publicador: