122 resultados para dental welding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the application of the Taguchi experimental design approach in optimizing the key process parameters for micro-welding of thin AISI 316L foil using the 100W CW fibre laser. A L16 Taguchi experiment was conducted to systematically understand how the power, scanning velocity, focus position, gas flow rate and type of shielding gas affect the bead dimensions. The welds produced in the L16 Taguchi experiment was mainly of austenite cellular-dendrite structure with an average grain size of 5µm. An exact penetration weld with the largest penetration to fusion width ratio was obtained. Among those process parameters, the interaction between power and scanning velocity presented the strongest effect to the penetration to fusion width ratio and the power was found to be the predominantly important factor that drives the interaction with other factors to appreciably affect the bead dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A L27 Taguchi experiment was done to investigate the effect of laser power, welding time, laser mode (CW and two pulsed modes), focus position, and their possible interactions on the weld-bead aspect ratio of laser-welded NiTi wires by using a 100W fibre laser. The optimized parameter setting to produce the full penetrated weldment with minimum welding defects is successfully determined in the Taguchi experiment. The laser mode is found to be the most important parameter that directly controls the weld-bead aspect ratio. The focus position is the secondly important parameter for the laser welding of NiTi wires. Strong interaction between the power and focus position is found in the Taguchi experiment. The optimized weldment produced by the Taguchi experiment is mainly of columnar dendritic structure in the weld zone (WZ) with the size of 1-3µm, while the HAZ exhibits equiaxed grain structure with the size of 5-10µm. The Vickers micro-hardness test indicted that the WZ and HAZ in the weldment are softened to certain extends after fibre laser welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, a preliminary study was done to find out the initial parameter window to obtain the full-penetrated NiTi weldment. A L27 Taguchi experiment was then carried out to statistically study the effects of the welding parameters and their possible interactions on the weld bead aspect ratio (or penetration over fuse-zone width ratio), and to determine the optimized parameter settings to produce the full-penetrated weldment with desirable aspect ratio. From the statistical results in the Taguchi experiment, the laser mode was found to be the most important factor that substantially affects the aspect ratio. Strong interaction between the power and focus position was found in the Taguchi experiment. The optimized weldment was mainly of columnar dendritic structure in the weld zone (WZ), while the HAZ exhibited equiaxed grain structure. The XRD and DSC results showed that the WZ remained the B2 austenite structure without any precipitates, but with a significant decrease of phase transformation temperatures. The results in the micro-hardness and tensile tests indicated that the mechanical properties of NiTi were decreased to a certain extent after fibre laser welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endodontic lubricants, irrigating solutions and medicaments help reduce the microbial load within root canals. Primary and secondary cases involve different microbes. Each'solution'or combinations thereof could play a significant role but no detailed guidelines exist on their use. An audit was undertaken to compare current practice in Belfast Dental School to the others across the UK and Republic of Ireland (ROI). This audit highlighted three main differences between Belfast and other dental schools. Many other institutions utilized other irrigants besides sodium hypochlorite (NaOCl), different intracanal medicaments, including calcium hydroxide, and higher concentrations of NaOCl. Having gathered this information, we ask, 'Is there sufficient evidence to change the endodontic regime currently used at Belfast Dental School?'. Using the findings from the literature review (Part 1), we introduce new evidence-based protocols for primary and secondary cases for use in Belfast Dental School. Clinical Relevance: In the absence of detailed clinical guidelines on the use of endodontic lubricants, irrigants and medicaments in primary and secondary cases, it is important to be aware of current practice in UK and ROI dental schools where dentists and specialists are trained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To investigate dental erosion among 12-14 year old Sudanese school children and evaluate the associated risk factors. Basic Research Design: Cross sectional survey in secondary schools in Khartoum city, Sudan. Method and Participants: A sample of 157 school children was obtained from both private and public schools. Erosion on the labial and palatal surfaces of maxillary incisors was measured by criterion based on the Smith and Knight Tooth Wear Index. Dietary intake and other related factors were assessed using a questionnaire. Results: The overall erosion prevalence in this group was 66.9%, of which 45.2% was mild and 21.7% was moderate erosion. A strong association was found between erosion and private schooling (higher socioeconomic groups), carbonated drinks, herbal hibiscus drink and traditional acidic food consumption. Conclusion: There was a high prevalence of dental erosion among Sudanese school children which was mild to moderate in severity and was strongly associated with acidic dietary intake © BASCD 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
INTRODUCTION:
Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
METHODS:
Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca(2+) microfluorimetry.
RESULTS:
Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca(2+) microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca(2+)](i)) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
CONCLUSIONS:
Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic metal welding can be used to join two metal foils. There are two different effects under ultrasonic welding. They are surface effect and volume effect. These two effects were validated under macro experiments. Then how to validate in micro test is seldom researched. EBSD method was used to research the microstructure evolution of AA6061 under ultrasonic welding. The image maps indicating all Euler angle and the correlated misorientation angle distribution of both original foil and welding sample were got by EBSD in order to understand how ultrasonic welding affect the grain orientation and microstructure. The test shows that after ultrasonic vibration, the grain size has little change. And ultrasonic vibration results in a very weak texture. FEM results also validate these conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory NiTi alloys have been used extensively for medical device applications such as orthopedic, dental, vascular and cardiovascular devices on account of their unique shape memory effect (SME) and super-elasticity (SE). Laser welding is found to be the most suitable method used to fabricate NiTi-based medical components. However, the performance of laser-welded NiTi alloys under corrosive environments is not fully understood and a specific focus on understanding the corrosion fatigue behaviour is not evident in the literature. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi alloys using bending rotation fatigue (BRF) test which was integrated with a specifically designed corrosion cell. The testing environment was Hanks’ solution (simulated body fluid) at 37.5oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance at different periods during the BRF test. Experiments indicate that the laser-welded NiTi alloy would be more susceptible to the corrosion fatigue attack than the bare NiTi alloy. This finding can serve as a benchmark for the product designers and engineers to determine the factor of safety of NiTi medical devices fabricated using laser welding.