118 resultados para cutting tools
Resumo:
This paper presents a 3D simulation system which is employed in order to predict cutting forces and tool deflection during end-milling operation. In order to verify the accuracy of 3D simulation, results (cutting forces and tool deflection) were compared with those based on the theoretical relationships, in terms of agreement with experiments. The results obtained indicate that the simulation is capable of predicting the cutting forces and tool deflection.
Resumo:
The work aims at assessing the success of Brunetta’s reform (Legislative Decree n. 150/2009), a far-reaching reform that aimed at improving both organizational and individual performance in Italian public administration through a specific planning and control process (the performance cycle) and most of all through two new tools, Performance Plan and Performance Report. The success of the reform is assessed, with particular emphasis on local governments, analyzing the diffusion and use of these new tools. The study has been conducted using a deductive-inductive methodology. Thus, after a study of managerial reforms in Italy and performance measurement literature, a possible model (PerformEL Model) local governments could follow to draw up Performance Plan and Report as effective tools for performance measurement has been designed (deductive phase). Performance Plans 2011-2013 and Performance Report 2011 downloaded from Italian big sized municipalities’ websites have been analyzed in the light of PerformEL Model, to assess the diffusion of the documents and their coherence with legal requirements and suggestions from literature (inductive phase). Data arising from the empirical analysis have been studied to evaluate the diffusion and the effectiveness of big sized municipalities’ Performance Plans and Reports as performance measurement tools and thus to assess the success of the reform (feedback phase). The study shows a scarce diffusion of the documents; they are mostly drew up because of their compulsoriness or to gain legitimization. The results testify the failure of Brunetta’s reform, at least with regard to local governments.
Resumo:
Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.
Resumo:
Currently there is extensive theoretical work on inconsistencies in logic-based systems. Recently, algorithms for identifying inconsistent clauses in a single conjunctive formula have demonstrated that practical application of this work is possible. However, these algorithms have not been extended for full knowledge base systems and have not been applied to real-world knowledge. To address these issues, we propose a new algorithm for finding the inconsistencies in a knowledge base using existing algorithms for finding inconsistent clauses in a formula. An implementation of this algorithm is then presented as an automated tool for finding inconsistencies in a knowledge base and measuring the inconsistency of formulae. Finally, we look at a case study of a network security rule set for exploit detection (QRadar) and suggest how these automated tools can be applied.
Resumo:
Integrating analysis and design models is a complex task due to differences between the models and the architectures of the toolsets used to create them. This complexity is increased with the use of many different tools for specific tasks using an analysis process. In this work various design and analysis models are linked throughout the design lifecycle, allowing them to be moved between packages in a way not currently available. Three technologies named Cellular Modeling, Virtual Topology and Equivalencing are combined to demonstrate how different finite element meshes generated on abstract analysis geometries can be linked to their original geometry. Cellular models allow interfaces between adjacent cells to be extracted and exploited to transfer analysis attributes such as mesh associativity or boundary conditions between equivalent model representations. Virtual Topology descriptions used for geometry clean-up operations are explicitly stored so they can be reused by downstream applications. Establishing the equivalence relationships between models enables analysts to utilize multiple packages for specialist tasks without worrying about compatibility issues or substantial rework.
Resumo:
For a multiplicity of socio-economic, geo-political, strategic and identity-based reasons, Turkey’s progress towards EU membership is often treated as a sui generis case. Yet although Turkey’s accession negotiations with the European Union (EU) are essentially a bilateral – and often stormy – affair, they take place within a wider and dynamic process of enlargement in which not only can the gloomy – sometimes dark – shadows of past and prospective enlargements be clearly detected, but so too can the often chill winds from ongoing, parallel negotiations with other candidates. How the EU negotiates accession and what it expects from candidates has continued to evolve since the EU began drawing up its framework for negotiations with Turkey ten years ago. This paper charts this evolution by first identifying changes in the light of Croatia’s negotiating experience, the ‘lessons learnt’ by the EU in meeting the challenges of Bulgarian and Romanian accession, the EU’s handling of Iceland’s membership bid and accession negotiations, and the revised approach to negotiating accession evident in the more recent frameworks for accession negotiations with Montenegro and Serbia. The paper then explores the extent to which these changes have impacted on the approach the EU has adopted in framing and progressing accession negotiations with Turkey. In doing so, it questions both the consistency with which the EU’s negotiates accession and the extent to which Turkey’s progress towards EU membership is conditioned by the broader dynamics of EU enlargement as opposed to simply the dynamics within EU-Turkey relations and domestic Turkish reform efforts.
Resumo:
The goal of the POBICOS project is a platform that facilitates the development and deployment of pervasive computing applications destined for networked, cooperating objects. POBICOS object communities are heterogeneous in terms of the sensing, actuating, and computing resources contributed by each object. Moreover, it is assumed that an object community is formed without any master plan; for example, it may emerge as a by-product of acquiring everyday, POBICOS-enabled objects by a household. As a result, the target object community is, at least partially, unknown to the application programmer, and so a POBICOS application should be able to deliver its functionality on top of diverse object communities (we call this opportunistic computing). The POBICOS platform includes a middleware offering a programming model for opportunistic computing, as well as development and monitoring tools. This paper briefly describes the tools produced in the first phase of the project. Also, the stakeholders using these tools are identified, and a development process for both the middleware and applications is presented. © 2009 IEEE.