78 resultados para complexity in spatiotemporal evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a fully-distributed self-healing algorithm dex that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders—whose expansion properties holddeterministically—that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decide which nodes join and leave and at what time, and knows the past random choices made by the algorithm). Previous distributed expander constructions typically provide only probabilistic guarantees on the network expansion whichrapidly degrade in a dynamic setting; in particular, the expansion properties can degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only O(logn)O(log⁡n) rounds and O(logn)O(log⁡n) messages are needed with high probability (n is the number of nodes currently in the network). The algorithm requires only a constant number of topology changes. Moreover, our algorithm allows for an efficient implementation and maintenance of a distributed hash table on top of dex  with only a constant additional overhead. Our results are a step towards implementing efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion) despite dynamic changes.

Gopal Pandurangan has been supported in part by Nanyang Technological University Grant M58110000, Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 Grant MOE2010-T2-2-082, MOE AcRF Tier 1 Grant MOE2012-T1-001-094, and the United States-Israel Binational Science Foundation (BSF) Grant 2008348. Peter Robinson has been supported by Grant MOE2011-T2-2-042 “Fault-tolerant Communication Complexity in Wireless Networks” from the Singapore MoE AcRF-2. Work done in part while the author was at the Nanyang Technological University and at the National University of Singapore. Amitabh Trehan has been supported by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). Work done in part while the author was at Hebrew University of Jerusalem and at the Technion and supported by a Technion fellowship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Answer Set Programming (ASP) is a popular framework for modelling combinatorial problems. However, ASP cannot be used easily for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, whereas this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, while training symbol resequencing protects the entire physical layer packet, but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to have a better performance in terms of search space, key rate and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study.