85 resultados para charge
Resumo:
In a recent article (J. Am. Chem. Soc. 2011, 133, 20186) we investigated the initial spatial distribution of dry excess electrons in a series of room-temperature ionic liquids (RTILs). Perhaps unexpectedly, we found that in some alkylammonium-based systems the excess negative charge resided on anions and not on the positive cations. Following on these results, in the current paper we describe the time evolution of an excess electronic charge introduced in alkylammonium- and pyrrolidinium-based ionic liquids coupled with the bis(trifluoromethylsulfonyl)amide ([TfN]) anion. We find that on a 50 fs time scale an initially delocalized excess electron localizes on a single [TfN] anion which begins a fragmentation process. Low-energy transitions have a very different physical origin on the several femtoseconds time scale when compared to what occurs on the picosecond time scale. At time zero, these are intraband transitions of the excess electron. However after 40 fs when the excess electronic charge localizes on a single anion, these transitions disappear, and the spectrum is dominated by electron-transfer transitions between the fragments of the doubly charged breaking anion. © 2013 American Chemical Society.
Resumo:
Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the ${\rm Y}{{{\rm b}}^{+}}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes; ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm Yb}(6{{{\rm s}}^{2}}{{\;}^{1}}{\rm S})+{\rm R}{{{\rm b}}^{+}}(4{{{\rm p}}^{6}}{{\;}^{1}}{\rm S})+h\nu $ and ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm YbR}{{{\rm b}}^{+}}({{X}^{1}}{{\Sigma }^{+}})+h\nu $. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play important roles, inducing coupling between the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.
Resumo:
Radiative decay processes at cold and ultra cold temperatures for sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH+ molecular cation. A multi-reference configuration-interaction approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals are obtained from state-averaged multi-configuration-self-consistent field calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 μK up to 10 000 K. Results are obtained for all isotopes of sulfur, colliding with H+ and D+ ions and comparison is made to a number of other collision systems.
An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
Resumo:
Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
Resumo:
In the past few years, attosecond techniques have been implemented for the investigation of ultrafast dynamics in molecules. The generation of isolated attosecond pulses characterized by a relatively high photon flux has opened up new possibilities in the study of molecular dynamics. In this paper, we report on experimental and theoretical results of ultrafast charge dynamics in a biochemically relevant molecule, namely, the amino acid phenylalanine. The data represent the first experimental demonstration of the generation and observation of a charge migration process in a complexmolecule, where electron dynamics precede nuclear motion. The application of attosecond technology to the investigation of electron dynamics in biologically relevant molecules represents a multidisciplinary work, which can open new research frontiers: those in which few-femtosecond and even subfemtosecond electron processes determine the fate of biomolecules. It can also open new perspectives for the development of new technologies, for example, in molecular electronics, where electron processes on an ultrafast temporal scale are essential to trigger and control the electron current on the scale of the molecule.
Resumo:
Spillover processes (i.e. the migration of ionic species from the support to the catalyst and vice versa) are known to play a very important role in catalysis and electrocatalysis. These spillover processes can be influenced by impurities (pre-existing on the catalyst surface) and by the catalyst morphology that may differ as a result of the differences in catalyst manufacturing processes. This work investigates the influence of impurities present in three commercial platinum (Pt) precursors. The resulting platinum films studied here were supported on yttria-stabilised-zirconia (YSZ). It was found that the three different catalyst films contained a range of impurities (determined by ICP-OES) that appear to affect the oxygen charge transfer reaction as studied by cyclic voltammetry (CV). © 2012 Elsevier B.V.
Resumo:
Spectrally-peaked proton beams of high charge (Ep ≈ 8 MeV, ΔE ≈ 4 MeV, N ≈ 50 nC ) have been observed from the interaction of an intense laser (>1019Wcm-2) with ultrathinCHfoils, as measured by spectrally-resolved full beam profiles. These beams are reproducibly generated for foil thicknesses 5-100 nm, and exhibit narrowing divergence with decreasing target thickness down to ≈8° for 5 nm. Simulations demonstrate that the narrow energy spread feature is a result of buffered acceleration of protons. The radiation pressure at the front of the target results in asymmetric sheath fields which permeate throughout the target, causing preferential forward acceleration. Due to their higher chargeto-mass ratio, the protons outrun a carbon plasma driven in the relativistic transparency regime.
Resumo:
The interaction of high‐intensity laser pulses with matter releases instantaneously ultra‐large currents of highly energetic electrons, leading to the generation of highly‐transient, large‐amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser‐irradiated thin metallic foils. An application employing laser‐driven impulsive fields for energy‐selective ion beam focusing is also presented.
Resumo:
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.