176 resultados para angular spectrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism Spectrum Disorders (ASD) are pervasive developmental disorders that are diagnosed along a continuum of behavioural variants in social interaction, communication, and imagination. Some individuals on the spectrum are ‘high-functioning’ and able to cope in every day environments, while others are severely affected, non-verbal, and may have comorbid diagnoses, such as intellectual disability, epilepsy, and/or obsessional, conduct, or mental health disorders. ASD diagnosis can be formulated from as early as 6-months to one year of age, although it is more common that children are aged 2-3 years before diagnosis is affirmed. Frequently, higher functioning individuals are not diagnosed until adolescence or even adulthood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing consensus that an appropriate classroom environment will aid the performance of the pupil with autism spectrum disorder (ASD). There are, however, very few design guidelines available when considering ASD and the school environment. Such guidelines that do exist tend only to be in general terms. Therefore, this article seeks to highlight design considerations specifically for the ASD-friendly Key Stage 1 (age five to eight) classroom. It will first highlight some of the challenges for those with autism spectrum disorder in a school environment and the triad of challenges faced by architects and designers when considering ASD-friendly classroom design. It will then go on to describe the findings and results of a two-year study carried out in conjunction with the ASD teaching staff of Northern Ireland's Southern Education and Library Board. These consist of 16 specific design considerations for the Key Stage 1 ASD-friendly classroom applicable to all classrooms for pupils between five and eight years of age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on new VLT optical spectroscopic and multiwavelength archival observations of SN 1996cr, a previously identified ultraluminous X-ray source known as Circinus galaxy X-2. Our optical spectrum confirms SN 1996cr as a bona fide Type IIn supernova, while archival imaging from the Anglo-Australian Telescope archive isolates the explosion date to between 1995 February 28 and 1996 March 16. SN 1996cr is one of the closest SNe (approximate to 3.8 Mpc) in the last several decades, and in terms of flux ranks among the brightest radio and X-ray SNe ever detected. The wealth of optical, X-ray, and radio observations that exist for this source provide relatively detailed constraints on its postexplosion expansion and progenitor history, including a preliminary angular size constraint from VLBI. Archival X-ray and radio data imply that the progenitor of SN 1996cr evacuated a large cavity just prior to exploding: the blast wave likely spent similar to 1-2 yr in relatively uninhibited expansion before eventually striking the dense circumstellar material which surrounds SN 1996cr. The X-ray and radio emission, which trace the progenitor mass-loss rate, have respectively risen by a factor of greater than or similar to 2 and remained roughly constant over the past 7 years. This behavior is reminiscent of the late rise of SN 1987A, but 1000 times more luminous and much more rapid to onset. SN 1996cr may likewise provide us with a younger example of SN 1978K and SN 1979C, both of which exhibit flat X-ray evolution at late times. Complex oxygen line emission hints at a possible concentric shell or ringlike structure. The discovery of SN 1996cr suggests that a substantial fraction of the closest SNe observed in the last several decades have occurred in wind-blown bubbles, and argues for the phenomena being widespread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested(1,2) to make up much of the 'dark matter' in the halo of the Milky way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models(3-5) indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical fatigue due to environmental loads and spectrum analysis due to launch loads of the primary structure of a low cost, low-earth orbit small satellite intended for earth observation missions are presented. The payload of the satellite under consideration is a precise optical unit to image the earth’s surface having a mass of 45 kg. 3-D Finite Element Model for the satellite structure is generated by applying substructure method. Modal analysis is required to determine natural frequencies of the satellite and define its mode shape. Then, ranking of mode shapes according to specific constraint is performed. Harmonic analysis at resonance frequencies with the highest ranking is done and cumulative fatigue damage analysis is performed. Spectrum analysis is performed for Small Sat structure to verify the satellite structure reliability under all dynamic random vibration loads applied during transportation and launch cases.