439 resultados para amphibian skin peptide


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On the basis of histamine release from rat peritoneal mast cells, an octadecapeptide was isolated from the skin extract of the Northern Leopard frog (Rana pipiens), This peptide was purified to homogeneity using reversed-phase high performance liquid chromatography and found to have the following primary structure by Edman degradation and pyridylethylation: LVRGCWTKSYPPKPCFVR, in which Cys(5) and Cys(15) are disulfide bridged. The peptide was named peptide leucine-arginine (pLR), reflecting the N- and C-terminal residues. Molecular modeling predicted that pLR possessed a rigid tertiary loop structure with flexible end regions, pLR was synthesized and elicited rapid, noncytolytic histamine release that had a a-fold greater potency when compared with one of the most active histamine-liberating peptides, namely melittin, pLR was able to permeabilize negatively charged unilamellar lipid vesicles but not neutral vesicles, a finding that was consistent with its nonhemolytic action, pLR inhibited the early development of granulocyte macrophage colonies from bone marrow stem cells but did not induce apoptosis of the end stage granulocytes, i,e. mature neutrophils, pLR therefore displays biological activity with both granulopoietic progenitor cells and mast cells and thus represents a novel bioactive peptide from frog skin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Australasian anuran amphibian genus Litoria, contains many phenotypically-diverse species as a result of radial evolution of an ancestral species into different biotopes much in the manner of the indigenous marsupial mammals. In common with members of the Central/South American genus Phyllomedusa, their specialized skin granular glands are factories for the production of a plethora of biologically-active peptides. Here we report a more detailed study of those present in the defensive skin secretion of the Australasian giant white-lipped tree frog, Litoria infrafrenata, and, for the first time, we have identified three novel frenatins by deduction of primary structures from cDNAs that were cloned from a library constructed from lyophilized skin secretion using a recently-developed technique. All open-reading frames consisted of a putative signal peptide and an acidic pro-region followed by a single copy of a frenatin peptide. Processed peptides corresponding in molecular mass to the deduced molecular masses of frenatins (named 1.1, 3, 3.1 and 4.1) were identified in the same secretion sample using HPLC and mass spectroscopy. The application of this technique thus permits parallel peptidomic and transcriptomic analyzes on the same lyophilized skin secretion sample circumventing sacrifice of specimens from endangered herpetofauna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Odorous frogs of the sub-genus Odorrana are of oriental distribution, and are so called due to the foul smell of their defensive skin secretions released from specialized skin glands following stress or predator attack. Here we report the application of a “shotgun” skin secretion cDNA library cloning technique which can rapidly expedite identification of secretion bioactive peptides. From a library constructed from the skin secretion of the Large Chinese Odorous frog, Rana (Odorrana) livida, we have identified four novel peptides whose primary structures were deduced initially from cloned precursors. Subsequently, mature peptides were located in and structurally characterized from reverse phase HPLC fractions of skin secretion. Named lividins 1–4, these were found to be structural homologs of known antimicrobial peptide families from Rana frogs. Rapid identification of novel peptides can thus be rapidly achieved using this non-invasive, non-destructive technology and the extensive similarities revealed between antimicrobial peptide precursor organization and nucleic acid sequences would lend support to the hypothesis that they have a common ancestral origin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The defensive strategy of amphibians against predator attack relies heavily on the secretion of noxious/toxic chemical cocktails from specialized skin granular glands. Bioactive peptides constitute a major component of secretions in many species and the most complex are produced by neotropical leaf frogs of the sub-family Phyllomedusinae. We recently reported that these skin secretions contain elements of both the granular gland peptidome and transcriptome and that polyadenylated mRNAs constituting the latter are protected from degradation by interactions with endogenous amphipathic peptides. This thus permits parallel amino acid sequencing of peptides and nucleic acid sequencing of cloned precursor transcripts from single lyophilized samples of secretion. Here we report that the protection afforded is sufficiently robust to permit transcriptome studies by cloning of full-length polyadenylated peptide precursor encoding mRNAs from libraries constructed using ambient temperature air-dried skin from recently deceased specimens as source material. The technique was sufficiently sensitive to permit the identification of cDNAs encoding antimicrobial peptides constituted by six different isoforms of phylloseptin and two dermaseptins. Also, for the first time, establishment of the nucleic acid and amino acid sequence of the precursor encoding the phyllomedusine frog skin bradykinin-related peptide, phyllokinin, from cloned cDNA, was achieved. These data unequivocally demonstrate that the granular gland transcriptome persists in air-dried amphibian skin—a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kinestatin, isolated from the skin of the Chinese toad, Bombina maxima, was the first bradykinin B2 receptor antagonist identified in amphibians. Molecular cloning established that it is co-encoded with the bradykinin-related peptide, maximakinin, within one of several skin kininogens. To examine other species within the genus Bombina for the presence of structural homologues of kinestatin, we subjected skin secretion of the toad, Bombina orientalis, to HPLC fractionation with subsequent bioassay of fractions for antagonism of bradykinin activity using an isolated rat tail artery smooth muscle preparation. A single fraction was located that inhibited bradykinin-induced relaxation of rat arterial smooth muscle and MALDI-TOF analysis of this fraction revealed that it contained a single peptide of molecular mass 3198.5 Da. Further primary structural analysis of this peptide showed that it was a 28-mer with an N-terminal Asp (D) residue and a C-terminal Val (V) residue that was amidated. The peptide was named DV-28 amide in accordance with these primary structural attributes. Synthetic DV-28 amide replicated the observed bradykinin antagonistic effect within the smooth muscle bioassay in a dose-dependent manner. In addition, it was observed to inhibit the proliferation of human microvessel endothelial cells (HMECs) as assessed by MTT assay. Bioinformatic analysis revealed that DV-28 amide was, like kinestatin, co-encoded with a bradykinin receptor agonist on one of two skin kininogens identified in B. orientalis. DV-28 amide thus represents a novel class of bradykinin antagonist from skin secretions of bombinid toads that appear to be a rich source of such novel peptides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skin secretions from Australian frogs of the genus Litoria have been extensively studied for many years and are known to contain a large array of antimicrobial peptides that often bear their specific names — caerins (L. caerulea), aureins (L. aurea), citropins (L. citropa) and maculatins (L. genimaculata) — and each group displays distinct primary structural attributes. During a systematic transcriptome cloning study using a cDNA library derived from skin secretion of L. aurea, a series of identical clones were identified that encoded a novel 25-mer antimicrobial peptide that displayed 92% structural identity with caerin 1.12 from L. caerulea, differing in amino acid sequence at only two positions — Arg for Gly at position 7 and Leu amide for Ser amide at the C-terminus. The novel peptide had conserved Pro residues at positions 15 and 19 that flank a flexible hinge region which previous studies have suggested are important for effective orientation of the two alpha-helices within the bacterial membrane resulting in lysis of cells. As the two substitutions in the novel peptide serve to increase both positive charge and hydrophobicity, we synthesised a replicate and determined its minimal inhibitory concentration (MIC) against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The MICs for these organisms were 3 µM and 4 µM, respectively, indicating a high potency and haemolysis was