89 resultados para adrenergic agonists, aging, hypertrophy, ventricular function, receptors
Resumo:
FFA2 is a G protein-coupled receptor that responds to short chain fatty acids (SCFAs) and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from either poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective FFA2 agonists that interact with the orthosteric binding site. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 (ECL2) and the transmembrane domain (TM) regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in the regulation of lipolysis in murine 3T3-L1 adipocytes. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the orthosteric binding site of FFA2 that will be invaluable in future ligand development at this receptor.
Resumo:
Objective: The purpose of this study was to examine the effect of maternal type 1 diabetes on the structure and function of the embryonic and neonatal mouse heart.
Methods: Type 1 diabetes was induced in female C57BL6/J mice using streptozotocin. Embryonic (n = 105) and neonatal hearts (n = 46) were examined using high-frequency ultrasound (US) and a cohort of E18.5 (n = 34) and 1-day-old pup hearts (n = 27) underwent histological examination.
Results: Global cardiac hypertrophy in late gestation (E18.5) was evident on US in the diabetic group compared to controls with increased interventricular septal (IVS) thickness (0.44 ± 0.08 mm vs 0.36 ± 0.08 mm, P < .05) and increased left ventricular wall thickness (0.38 ± 0.04 mm vs 0.29 mm ± 0.05, P < .01). Isovolumetric relaxation time was initially prolonged in the diabetic group but resolved by E18.5 to control values. Histological examination at E18.5 demonstrated increased transverse measurements (2.42 ± 0.72 mm/g vs 1.86 ± 0.55 mm/g, P < .05) and increased IVS thickness (0.64 ± 0.20 mm/g vs 0.43 ± 0.15 mm/g, P < .05) in diabetic embryos compared to control embryos.
Conclusion: Maternal hyperglycemia has severe effects on offspring with evidence of cardiac impairment and cardiac hypertrophy in the embryo. These effects persisted in the 1-day old but attenuated in the 1-week old suggesting cardiac remodeling after the hyperglycemic milieu of pregnancy is removed
Resumo:
The clonidine mydriasis model in rats has been widely applied in preclinical research to characterize a -adrenoceptor antagonistic properties of drugs. The present study was undertaken to pharmacologically determine if imidazoline I receptors are also involved in this model system. Sigmoid dose-response curves for pupillary dilation were produced in pentobarbital anesthetized rats by intravenous administration of increasing doses of agonists (guanabenz for a -adrenoceptors, clonidine for both a - adrenoceptors and imidazoline I receptors, and rilmenidine for imidazoline I receptors). Two antagonists (RS 79948 for a -adrenoceptors and efaroxan for imidazoline I receptors) were used to antagonize the mydriasis elicited by those three agonists, with antagonistic potencies calculated. In additional experiments, we examined the effect of the selective imidazoline I receptor antagonist, AGN 192403, on clonidine-induced mydriasis. The results showed that pupillary response curves elicited by guanabenz, clonidine and rilmenidine were competitively antagonized by both RS 79948 (0.03-1 mg/kg) and efaroxan (0.03-1 mg/kg) in a dose-related fashion. The potencies of either antagonist against the three agonists were not significantly different. AGN 192403 (5 mg/kg) did not significantly shift the clonidine mydriasis curve. These results suggest that imidazoline I receptors are not functionally involved in the rat clonidine mydriasis model and support this in vivo system as a useful model for studies of a -adrenoceptors. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.
Resumo:
Observational data show an inverse association between the consumption of whole-grain foods, and inflammation and related diseases. Although the underlying mechanisms are unclear, whole grains, and in particular the aleurone layer, contain a wide range of components with putative antioxidant and anti-inflammatory effects. We evaluated the effects of a diet high in wheat aleurone on plasma antioxidants status, markers of inflammation and endothelial function. In this parallel, participant-blinded intervention, seventy-nine healthy, older, overweight participants (45-65 years, BMI>25 kg/m²) incorporated either aleurone-rich cereal products (27 g aleurone/d), or control products balanced for fibre and macronutrients, into their habitual diets for 4 weeks. Fasting blood samples were taken at baseline and on day 29. Results showed that, compared to control, consumption of aleurone-rich products provided substantial amounts of micronutrients and phytochemicals which may function as antioxidants. Additionally, incorporating these products into a habitual diet resulted in significantly lower plasma concentrations of the inflammatory marker, C-reactive protein (P = 0·035), which is an independent risk factor for CVD. However, no changes were observed in other markers of inflammation, antioxidant status or endothelial function. These results provide a possible mechanism underlying the beneficial effects of longer-term whole-grain intake. However, it is unclear whether this effect is owing to a specific component, or a combination of components in wheat aleurone.
Resumo:
Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.
Resumo:
G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future.
Resumo:
Purpose: We have shown previously that macrophages/microglia accumulate in the subretinal space and express CD68 and Arginase-1 in the aging eye. Subretinal macrophages are in close contact with retinal pigment epithelial (RPE) cells. We hypothesize that RPE cells may play an important role in regulating macrophage/microglial phenotype and function. The aim of this study was to investigate the effect of RPE cells on the phenotype and function of bone marrow–derived macrophages (BM-DMs).
Methods: BM-DM from C57BL/6J mice were cultured in DMEM supplemented with 20%L929 cell supernatant for 5 days. The phenotype of BM-DMs was confirmed by flow cytometry as CD11b+F4/80+. Primary RPE cells were cultured from C57BL/6J mice and confirmed by RPE65 and cytokeratin staining. BMDMs were co-cultured with different types of RPE cells (healthy, oxidized, and apoptotic RPE) and then isolated from the co-culture system for phenotypic and functional assays.
Results: Co-culture of BM-DMs with RPE cells results in a time-dependent down-regulation of MHC-II expression and the generation of CD11b+F4/80+Ly6G+ myeloid-derived suppressor cells (MDSC). qRT-PCR analysis showed that RPE-induced MDSCs expressed high levels of IL-6, IL-1β, and Arginase-1, but lower levels of IL-12p40 and TNF-a compared to naïve BM-DMs. The expression levels of iNOS, TGF-β and Ym1 did not differ 207 between naive BMDMs and RPE-induced MDSCs. Furthermore, functional studies showed that these cells had reduced phagocytic activity and lower ability to stimulate T cell activation and proliferation. When RPE cells were pre-treated with oxidized photoreceptor outer segments before co-culturing with BMDMs, the expression of IL-1β and IL-6 in BMDMs was increased whereas the expression of Arginase-1 was decreased.
Conclusion: Our results suggest that healthy RPE cells can convert BMDMs into myeloid-derived suppressor cells under in vitro culture conditions, RPE-induced myeloid-derived suppressor cells are CD11b+F4/80+Ly6G+MHCIIlowIL6+IL1b+Arg-1+. The ability of RPE cells is reduced when suffering from oxidative insults.
Resumo:
CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear.
OBJECTIVE: To investigate expression and localization of the PROK ligands, receptors and their downstream transcriptional targets in the human fetal ovary.
SETTING: This study was conducted at the University of Edinburgh.
PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses.
DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and immunohistochemistry. Functional studies were performed using a human germ tumour cell line (TCam-2) stably transfected with PROKR1.
RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 weeks) than at earlier gestations (8-11 and 14-16 weeks). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localised to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human fetal ovary. PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK phosphorylation, and elevated COX2 expression.
CONCLUSIONS: Developmental changes in expression and regulation of COX2 and pERK by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.
Resumo:
The histamine H4 receptor regulates the inflammatory response. However, it is not known whether this receptor has a functional role in human neutrophils. We found that fMLP (1 μM), but not histamine (0.1-1 μM), induced Mac-1-dependent adhesion, polarization, and degranulation (release of lactoferrin). A pretreatment of neutrophils with histamine (0.001-1 μM) or JNJ 28610244 (0.1-10 μM), a specific H4 receptor agonist, led to inhibition of degranulation. Total inhibition of degranulation was obtained with 0.1 μM histamine and 10 μM JNJ 28610244. Furthermore, such inhibition by histamine of degranulation was reversed by JNJ 7777120 and JNJ 28307474, two selective H4 receptor antagonists. However, neither histamine nor the H4 receptor agonist JNJ 28610244 prevented fMLP-induced, Mac-1-dependent adhesion, indicating that the H4 receptor may block signals emanating from Mac-1-controlling degranulation. Likewise, engagement of the H4 receptor by the selective agonist JNJ 28610244 blocked Mac-1-dependent activation of p38 MAPK, the kinase that controls neutrophil degranulation. We also show expression of the H4 receptor at the mRNA level in ultrapure human neutrophils and myeloid leukemia PLB-985 cells. We concluded that engagement of this receptor by selective H4 receptor agonists may represent a good, therapeutic approach to accelerate resolution of inflammation.
Resumo:
BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.
RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.
CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.
Resumo:
How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in "staying alive" in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual.
Resumo:
Application of intermedin/adrenomedullin-2 (IMD/AM-2) protects cultured human cardiac vascular cells and fibroblasts from oxidative stress and simulated ischaemia-reoxygenation injury (I-R), predominantly via adrenomedullin AM1 receptor involvement; similar protection had not been investigated previously in human cardiomyocytes (HCM). Expression of IMD, AM and their receptor components was studied in HCM. Receptor subtype involvement in protection by exogenous IMD against injury by simulated I-R was investigated using receptor component-specific siRNAs. Direct protection by endogenous IMD against HCM injury, both as an autocrine factor produced in HCM themselves and as a paracrine factor released from HCMEC co-cultured with HCM, was investigated using peptide-specific siRNA for IMD. IMD, AM and their receptor components (CLR, RAMPs1-3) were expressed in HCM. IMD 1 nmol L−1, applied either throughout ischaemia (3 h) and re-oxygenation (1 h) or during re-oxygenation (1 h) alone, attenuated HCM injury (P < 0.05); cell viabilities were 59% and 61% respectively vs. 39% in absence of IMD. Cytoskeletal disruption, protein carbonyl formation and caspase activity followed similar patterns. Pre-treatment (4 days) of HCM with CLR and RAMP2 siRNAs attenuated (P < 0.05) protection by exogenous IMD. Pre-treatment of HCMEC with IMD (and AM) siRNA augmented (P < 0.05) I-R injury: cell viabilities were 22% (and 32%) vs. 39% untreated HCMEC. Pre-treatment of HCM with IMD (and AM) siRNA did not augment HCM injury: cell viabilities were 37% (and 39%) vs. 39% untreated HCM. Co-culture with HCMEC conferred protection from injury on HCM; such protection was attenuated when HCMEC were pre-treated with IMD (but not AM) siRNA before co-culture. Although IMD is present in HCM, IMD derived from HCMEC and acting in a paracrine manner, predominantly via AM1 receptors, makes a marked contribution to cardiomyocyte protection by the endogenous peptide against acute I-R injury.
Resumo:
BACKGROUND: Care of critically ill patients in intensive care units (ICUs) often requires potentially invasive or uncomfortable procedures, such as mechanical ventilation (MV). Sedation can alleviate pain and discomfort, provide protection from stressful or harmful events, prevent anxiety and promote sleep. Various sedative agents are available for use in ICUs. In the UK, the most commonly used sedatives are propofol (Diprivan(®), AstraZeneca), benzodiazepines [e.g. midazolam (Hypnovel(®), Roche) and lorazepam (Ativan(®), Pfizer)] and alpha-2 adrenergic receptor agonists [e.g. dexmedetomidine (Dexdor(®), Orion Corporation) and clonidine (Catapres(®), Boehringer Ingelheim)]. Sedative agents vary in onset/duration of effects and in their side effects. The pattern of sedation of alpha-2 agonists is quite different from that of other sedatives in that patients can be aroused readily and their cognitive performance on psychometric tests is usually preserved. Moreover, respiratory depression is less frequent after alpha-2 agonists than after other sedative agents.
OBJECTIVES: To conduct a systematic review to evaluate the comparative effects of alpha-2 agonists (dexmedetomidine and clonidine) and propofol or benzodiazepines (midazolam and lorazepam) in mechanically ventilated adults admitted to ICUs.
DATA SOURCES: We searched major electronic databases (e.g. MEDLINE without revisions, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE and Cochrane Central Register of Controlled Trials) from 1999 to 2014.
METHODS: Evidence was considered from randomised controlled trials (RCTs) comparing dexmedetomidine with clonidine or dexmedetomidine or clonidine with propofol or benzodiazepines such as midazolam, lorazepam and diazepam (Diazemuls(®), Actavis UK Limited). Primary outcomes included mortality, duration of MV, length of ICU stay and adverse events. One reviewer extracted data and assessed the risk of bias of included trials. A second reviewer cross-checked all the data extracted. Random-effects meta-analyses were used for data synthesis.
RESULTS: Eighteen RCTs (2489 adult patients) were included. One trial at unclear risk of bias compared dexmedetomidine with clonidine and found that target sedation was achieved in a higher number of patients treated with dexmedetomidine with lesser need for additional sedation. The remaining 17 trials compared dexmedetomidine with propofol or benzodiazepines (midazolam or lorazepam). Trials varied considerably with regard to clinical population, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded outcome assessors. Compared with propofol or benzodiazepines (midazolam or lorazepam), dexmedetomidine had no significant effects on mortality [risk ratio (RR) 1.03, 95% confidence interval (CI) 0.85 to 1.24, I (2) = 0%; p = 0.78]. Length of ICU stay (mean difference -1.26 days, 95% CI -1.96 to -0.55 days, I (2) = 31%; p = 0.0004) and time to extubation (mean difference -1.85 days, 95% CI -2.61 to -1.09 days, I (2) = 0%; p < 0.00001) were significantly shorter among patients who received dexmedetomidine. No difference in time to target sedation range was observed between sedative interventions (I (2) = 0%; p = 0.14). Dexmedetomidine was associated with a higher risk of bradycardia (RR 1.88, 95% CI 1.28 to 2.77, I (2) = 46%; p = 0.001).
LIMITATIONS: Trials varied considerably with regard to participants, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded assessors.
CONCLUSIONS: Evidence on the use of clonidine in ICUs is very limited. Dexmedetomidine may be effective in reducing ICU length of stay and time to extubation in critically ill ICU patients. Risk of bradycardia but not of overall mortality is higher among patients treated with dexmedetomidine. Well-designed RCTs are needed to assess the use of clonidine in ICUs and identify subgroups of patients that are more likely to benefit from the use of dexmedetomidine.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42014014101.
FUNDING: The National Institute for Health Research Health Technology Assessment programme. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates.