107 resultados para ZIRCONIUM DIOXIDE
Resumo:
The objective of this work was to study the influence of changing the cation of the ionic liquid (IL) on gas solubility. For this purpose, the low-pressure solubility of carbon dioxide and of ethane in three ILs based on the bis{(trifluoromethyl)sulfonyl}imide anion ([NTf2](-)) was determined experimentally. Solubility data is reported for 1-ethyl-3-methylimidazolium ([C(1)C(2)Im](+)), 1-butyl-1-methylpyrrolidinium ([C(1)C(4)pyrr](+)) and propylcholinium ([N1132-OH](+)) bis{(trifluoromethyl)sulfonyl}imide ILs between 300 and 345 K. These data are precise to within +/- 1% and accurate to within +/- 5%. In these ILs, carbon dioxide (mole fraction solubility between 1 and 3 x 10(-2), molarity between 0.03 and 0.1 mol L-1) is one order of magnitude more soluble than ethane. The effect of changing the cation is small but significant. Changing the cation has a similar effect on both gases even if the differences are more pronounced in the case of ethane with the order of solubility [C(1)C(4)pyrr][NTf2] > [C(1)C(2)Im][NTf2] > [N1132-OH][NTf2]. For all the systems, the solubility decreases with temperature corresponding to exothermic processes of solvation and negative enthalpies and entropies of solvation were calculated. The properties of solvation of the two gases in [C(1)C(4)pyrr][NTf2] do not vary significantly with temperature while important variations are depicted for both gases in [C(1)C(2)Im][NTf2]. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Densities and viscosities of the ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [C4C1Im][C8SO4] were measured as a function of temperature between 313 K and 395 K. Solubilities of hydrogen and carbon dioxide were determined, between 283 K and 343 K, and at pressures close to atmospheric in [C4C1Im][C 8SO4] and in another ionic liquid based on the alkylsulfate anion-1-ethyl-3-methylimidazolium ethylsulfate, [C 2C1Im][C2SO4]. Density and viscosity were measured using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific with accuracies of 10-3 g cm -3 and 1%, respectively. Solubilities were obtained using an isochoric saturation technique and, from the variation of solubility with temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs energy, the enthalpy, and the entropy, are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © The Royal Society of Chemistry.
Resumo:
Conventional water purification and disinfection generally involve potentially hazardous substances, some of which known to be carcinogenic in nature. Titanium dioxide photocatalytic processes provide an effective route to destroy hazardous organic contaminants. This present work explores the possibility of the removal of organic pollutants (phenol) by the application of TiO2 based photocatalysts. The production of series of metal ions doped or undoped TiO2 were carried out via a sol–gel method and a wet impregnation method. Undoped TiO2 and Cu doped TiO2 showed considerable phenol degradation. The efficiency of photocatalytic reaction largely depends on the photocatalysts and the methods of preparation the photocatalysts. The doping of Fe, Mn, and humic acid at 1.0 M% via sol–gel methods were detrimental for phenol degradation. The inhibitory effect of initial phenol concentration on initial phenol degradation rate reveals that photocatalytic decomposition of phenol follows pseudo zero order reaction kinetics. A concentration of > 1 g/L TiO2 and Cu doped TiO2 is required for the effective degradation of 50 mg/L of phenol at neutral pH. The rise in OH- at a higher pH values provides more hydroxyl radicals which are beneficial of phenol degradation. However, the competition among phenoxide ion, Cl- and OH- for the limited number of reactive sites on TiO2 will be a negative influence in the generation of hydroxyl radical. The dependence of phenol degradation rate on the light intensity was observed, which also implies that direct sunlight can be a substitute for the UV lamps and that photocatalytic treatment of organic pollutants using this technique shows some promise.
Resumo:
Single oxides of Ti and Zr incorporated SBA-15 were prepared and characterized by N-2 adsorption, NMR, and XPS techniques. Si-29 MAS NMR results suggest the formation of Si-O-X linkages (X: Ti or Zr) by an increase in the ratio of Q(3)/Q(4) in the presence of Ti or Zr. XPS analysis of Ti-SBA-15 catalysts indicate the presence of Ti-O-Si bonds in addition to Ti-O-Ti and Si-O-Si bonds, supporting the NMR evidence.
Resumo:
We present in this study the effect of nature and concentration of lithium salt, such as the lithium hexafluorophosphate, LiPF6; lithium tris(pentafluoroethane)-trifluorurophosphate LiFAP; lithium bis(trifluoromethylsulfonyl)imide, LiTFSI, on the CO2 solubility in four electrolytes for lithium ion batteries based on pure solvent that include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), as well as, in the EC:DMC, EC:EMC and EC:DEC (50:50) wt.% binary mixtures as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility values, the Henry’s law constant of the carbon dioxide in these solutions with the presence or absence of lithium salt was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOThermX software. From this study, it appears that the addition of 1 mol · dm-3 LiPF6 salt in alkylcarbonate solvents decreases their CO2 capture capacity. By using the same experimental conditions, an opposite CO2 solubility trend was generally observed in the case of the addition of LiFAP or LiTFSI salts in these solutions. Additionally, in all solutions investigated during this work, the CO2 solubility is greater in electrolytes containing the LiFAP salt, followed by those based on the LiTFSI case. The precision and accuracy of the experimental data reported therein, which are close to (1 and 15)%, respectively. From the variation of the Henry’s law constant with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state were calculated. Finally, a quantitative analysis of the CO2 solubility evolution was carried out in the EC:DMC (50:50) wt.% binary mixture as the function of the LiPF6 or LiTFSI concentration in solution to elucidate how ionic species modify the CO2 solubility in alkylcarbonates-based Li-ion electrolytes by investigating the salting effects at T = 298.15 K and atmospheric pressure.
Resumo:
The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ C-13 ((CO2)-C-13) to assess the potential CO2 sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO2 flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO2 utilized by microbial biomass. The component of SOM directly associated with CO2 capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can,differentiate between SOM derived through microbial uptake of CO2 and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.
Resumo:
Carbon composite monoliths were prepared from a commercial phenolic resin mixed with just 1 wt% of carbon nanotubes (CNTs) followed by carbonization and physical activation with CO. The products possess a hierarchical macroporous-microporous structure and superior CO adsorption properties. In particular, they show the top-ranked CO capacity (52 mg CO per g adsorbent at 25 °C and 114 mmHg) under low CO partial pressures, which is of more relevance for flue gas applications. This matches or exceeds those of carbons produced by complex chemical activation and functionalization. Our study demonstrates an effective way to create narrow micropores through structural modification of carbon composites by CNTs. © 2013 The Royal Society of Chemistry.
Resumo:
Boron-doped titanium dioxide (B-TiO) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm. Hydrogen production rates of B-TiO at 24 μL cm h far exceeded undoped TiO at 2.6 μL cm h. The B-TiO samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent. © 2013 The Owner Societies.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Resumo:
In this paper, we have reported the CO2 solubility in different pure alkyl carbonate solvents (EC, DMC, EMC, DEC) and their binary mixtures as EC/DMC, EC/EMC, and EC/DEC and for electrolytes [solvent + lithium salt] LiX (X = LiPF6, LiTFSI, or LiFAP) as a function of the temperature and salt concentration. To understand the parameters that influence the structure of the solvents and their ability to dissolve CO2, through the addition of a salt, we first analyzed the viscosities of EC/DMC + LiX mixtures by means of a modified Jones–Dole equation. The results were discussed considering the order or disorder introduced by the salt into the solvent organization and ion solvation sphere by calculating the effective solute ion radius, rs. On the basis of these results, the analysis of the CO2 solubility variations with the salt addition was then evaluated and discussed by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the CO2 solubility has been affected by the shape, charge density, and size of the ions, which influence the structuring of the solvents through the addition of a salt and the type of solvation of the ions.
Resumo:
Microcystins (cyclic heptapeptides) produced by a number of freshwater cyanobacteria are a potential cause for concern in potable water supplies due to their acute and chronic toxicity. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. It is, however, necessary to have a sufficient knowledge of how the catalyst materials cause the degradation of the toxins through the photocatalytic process. The present study reports microcystin degradation products of the photocatalytic oxidation by using a number of commercial TiO2 powder (P25, PC50, PC500 and UV100) and granular (KO1, KO3, TiCat-C, TiCat-S) materials, so aiding the mechanistic understanding of this process. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin for all the catalysts tested followed almost the same pathway, indicating the physical properties of the catalysts had little effects on the degradation pathway of microcystin-LR.
Resumo:
Geosmin is produced by cyanobacteria and actinomycetes in surface waters. It causes undesirable earthy off-flavours in freshwater fish and is a major concern for the drinking water industry. This paper presents the first published study on the use of the novel pelleted Ti02 photocatalyst, Hombikat K01/C, for the removal of geosmin from water. Ti02 in pelleted form eliminates the requirement for the separation of the catalyst from the water following treatment which is normally the case with the widely used powdered catalysts. A laboratory reactor was designed to limit system loss since the compound adsorbs to a wide range of surfaces. Initial concentration, aeration rate and irradiation were evaluated. It was found that degradation of geosmin followed the Langmuir-Hinshelwood model. Elevated aeration had no effect on the photocatalytic removal of geosmin, but increasing irradiation was found to increase degradation rates. The catalyst proved effective within 10 min under optimum conditions.
Resumo:
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process