276 resultados para X ray absorption


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermochemical surface gas nitriding of ß21s, Timetal 205 and a Ti–Al alloy was conducted using differential scanning calorimeter equipment, in nominally pure nitrogen at 850 °C and 950 °C (ß21s), 730 °C and 830 °C (Timetal 205), and 950 °C and 1050 °C (Ti–Al) for 1 h, 3 h and 5 h. X-ray diffraction analyses showed new phases formed in the nitrided layer, depending on the alloy and the time and the temperature of nitriding. Microstructures were analyzed using optical microscopy. Cross-sectional microhardness profiles of cross-sectional samples after nitriding were obtained using a Knoop indenter.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions of ions in the solid state for a series of representative 1,3-dialkylimidazolium hexafluorophosphate salts (either ionic liquids or closely related) have been examined by crystallographic analysis, combined with the theoretical estimation of crystal-packing densities and lattice-interaction energies. Efficient close-packing of the ions in the crystalline states is observed, but there was no compelling evidence for specific directional hydrogen-bonding to the hexafluorophosphate anions or the formation of interstitial voids. The close-packing efficiency is supported by the theoretical calculation of ion volumes, crystal lattice energies, and packing densities, which correlated well with experimental data. The crystal density of the salts can be predicted accurately from the summation of free ion volumes and lattice energies calculated. Of even more importance for future work, on these and related salts, the solid-state density of 1,3-dialkylimidazolium hexafluorophosphate salts can be predicted with reasonable accuracy purely on the basis of on ab initio free ion volumes, and this allows prediction of lattice energies without necessarily requiring the crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2 and GRS 1915+105. For Sco X-1 and Cyg X-2, the polarization levels at 2.4 µm are 1.3+/-0.10% and 5.4+/-0.7%, respectively, which is greater than the polarization level at 1.65 µm. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jet. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step towards probing the ordering, alignment, and variability of the outflow magnetic field, in a region closer to the central accreting object than is observed in the radio band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe experimental results on angularly resolved x-ray scatter from a sample of warm dense aluminium that has been created by double sided laser-driven shock compression. The experiment was carried out on the Central Laser Facility of the Rutherford Appleton Laboratory, using the VULCAN laser. The form of the angularly resolved scatter cross-section was compared with predictions based on a series of molecular dynamics simulations with an embedded atom potential, a Yukakwa potential and a bare Coulomb potential. The importance of screening is evident from the comparison and the embedded atom model seems to match experiment better than the Yukawa potential.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme to obtain brilliant x-ray sources by coherent reflection of a counter-propagating pulse from laser-driven dense electron sheets is theoretically and numerically investigated in a self-consistent manner. A radiation pressure acceleration model for the dynamics of the electron sheets blown out from laser-irradiated ultrathin foils is developed and verified by PIC simulations. The first multidimensional and integral demonstration of the scheme by 2D PIC simulations is presented. It is found that the reflected pulse undergoes Doppler-upshift by a factor 4?z2, where ?z = (1- vz2/c2)-1/2 is the effective Lorentz factor of the electron sheet al ong its normal direction. Meanwhile the pulse electric field is intensified by a factor depending on the electron density of the sheet in its moving frame ne/?, where ? is the full Lorentz factor.

Relevância:

100.00% 100.00%

Publicador: