116 resultados para Web as a Corpus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potentially inappropriate prescribing in older people is common in primary care and can result in increased morbidity, adverse drug events, hospitalizations and mortality. In Ireland, 36% of those aged 70 years or over received at least one potentially inappropriate medication, with an associated expenditure of over €45 million.The main objective of this study is to determine the effectiveness and acceptability of a complex, multifaceted intervention in reducing the level of potentially inappropriate prescribing in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matching query interfaces is a crucial step in data integration across multiple Web databases. The problem is closely related to schema matching that typically exploits different features of schemas. Relying on a particular feature of schemas is not suffcient. We propose an evidential approach to combining multiple matchers using Dempster-Shafer theory of evidence. First, our approach views the match results of an individual matcher as a source of evidence that provides a level of confidence on the validity of each candidate attribute correspondence. Second, it combines multiple sources of evidence to get a combined mass function that represents the overall level of confidence, taking into account the match results of different matchers. Our combination mechanism does not require use of weighing parameters, hence no setting and tuning of them is needed. Third, it selects the top k attribute correspondences of each source attribute from the target schema based on the combined mass function. Finally it uses some heuristics to resolve any conflicts between the attribute correspondences of different source attributes. Our experimental results show that our approach is highly accurate and effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal dynamics and speaker characteristics are two important features of speech that distinguish speech from noise. In this paper, we propose a method to maximally extract these two features of speech for speech enhancement. We demonstrate that this can reduce the requirement for prior information about the noise, which can be difficult to estimate for fast-varying noise. Given noisy speech, the new approach estimates clean speech by recognizing long segments of the clean speech as whole units. In the recognition, clean speech sentences, taken from a speech corpus, are used as examples. Matching segments are identified between the noisy sentence and the corpus sentences. The estimate is formed by using the longest matching segments found in the corpus sentences. Longer speech segments as whole units contain more distinct dynamics and richer speaker characteristics, and can be identified more accurately from noise than shorter speech segments. Therefore, estimation based on the longest recognized segments increases the noise immunity and hence the estimation accuracy. The new approach consists of a statistical model to represent up to sentence-long temporal dynamics in the corpus speech, and an algorithm to identify the longest matching segments between the noisy sentence and the corpus sentences. The algorithm is made more robust to noise uncertainty by introducing missing-feature based noise compensation into the corpus sentences. Experiments have been conducted on the TIMIT database for speech enhancement from various types of nonstationary noise including song, music, and crosstalk speech. The new approach has shown improved performance over conventional enhancement algorithms in both objective and subjective evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web sites that rely on databases for their content are now ubiquitous. Query result pages are dynamically generated from these databases in response to user-submitted queries. Automatically extracting structured data from query result pages is a challenging problem, as the structure of the data is not explicitly represented. While humans have shown good intuition in visually understanding data records on a query result page as displayed by a web browser, no existing approach to data record extraction has made full use of this intuition. We propose a novel approach, in which we make use of the common sources of evidence that humans use to understand data records on a displayed query result page. These include structural regularity, and visual and content similarity between data records displayed on a query result page. Based on these observations we propose new techniques that can identify each data record individually, while ignoring noise items, such as navigation bars and adverts. We have implemented these techniques in a software prototype, rExtractor, and tested it using two datasets. Our experimental results show that our approach achieves significantly higher accuracy than previous approaches. Furthermore, it establishes the case for use of vision-based algorithms in the context of data extraction from web sites.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational models of meaning trained on naturally occurring text successfully model human performance on tasks involving simple similarity measures, but they characterize meaning in terms of undifferentiated bags of words or topical dimensions. This has led some to question their psychological plausibility (Murphy, 2002; Schunn, 1999). We present here a fully automatic method for extracting a structured and comprehensive set of concept descriptions directly from an English part-of-speech-tagged corpus. Concepts are characterized by weighted properties, enriched with concept-property types that approximate classical relations such as hypernymy and function. Our model outperforms comparable algorithms in cognitive tasks pertaining not only to concept-internal structures (discovering properties of concepts, grouping properties by property type) but also to inter-concept relations (clustering into superordinates), suggesting the empirical validity of the property-based approach. Copyright © 2009 Cognitive Science Society, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One way to tackle health inequalities in resource-poor settings is to establish links between doctors and health professionals there and specialists elsewhere using web-based telemedicine. One such system run by the Swinfen Charitable Trust has been in existence for 13 years which is an unusually long time for such systems.

Objective: We wanted to gain some insights into whether and how this system might be improved.

Methods: We carried out a survey by questionnaire of referrers and specialists over a six months period.

Results: During the study period, a total of 111 cases were referred from 35 different practitioners, of whom 24% were not doctors. Survey replies were received concerning 67 cases, a response rate of 61 per cent. Eighty-seven per cent of the responding referrers found the telemedicine advice useful, and 78% were able to follow the advice provided. As a result of the advice received, the diagnosis was changed in 22% of all cases and confirmed in a further 18 per cent. Patient management was changed in 33 per cent. There was no substantial difference between doctors and non-doctors. During the study period, the 111 cases were responded to by 148 specialists, from whom 108 replies to the questionnaire were received, a response rate of 73 per cent. About half of the specialists (47%) felt that their advice had improved the management of the patients. There were 62 cases where it was possible to match up the opinions of the referrer and the consultants about the value of a specific teleconsultation. In 34 cases (55%) the referrers and specialists agreed about the value. However, in 28 cases (45%) they did not: specialists markedly underestimated the value of a consultation compared to referrers. Both referrers and specialist were extremely positive about the system which appears to be working well. Minor changes such as a clearer referral template and an improved web interface for specialists may improve it.