78 resultados para WALKING
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz. This is realized with the aid of the $\kappa-\mu$ / gamma composite fading model which assumes that the transmitted signal undergoes $\kappa-\mu$ fading which is subject to \emph{multiplicative} shadowing. Based on this, the total power of the multipath components, including both the dominant and scattered components, is subject to non-negligible variations that follow the gamma distribution. For this model, we present an integral form of the probability density function (PDF) as well as important analytic expressions for the PDF, cumulative distribution function, moments and moment generating function. In the case of indoor off-body communications, the corresponding measurements were carried out in the context of four explicit individual scenarios namely: line of sight (LOS) and non-LOS (NLOS) walking, rotational and random movements. The measurements were repeated within three different indoor environments and considered three different hypothetical body worn node locations. With the aid of these results, the parameters for the $\kappa-\mu$ / gamma composite fading model were estimated and analyzed extensively. Interestingly, for the majority of the indoor environments and movement scenarios, the parameter estimates suggested that dominant signal components existed even when the direct signal path was obscured by the test subject's body. Additionally, it is shown that the $\kappa-\mu$ / gamma composite fading model provides an adequate fit to the fading effects involved in off-body communications channels. Using the Kullback-Leibler divergence, we have also compared our results with another recently proposed shadowed fading model, namely the $\kappa-\mu$ / lognormal LOS shadowed fading model. It was found that the $\kappa-\mu$ / gamma composite fading model provided a better fit for the majority of the scenarios considered in this study.
Resumo:
This paper investigates the potential improvement in signal reliability for indoor off-body communications channels operating at 5.8 GHz using switched diversity techniques. In particular we investigate the performance of switch-and-stay combining (SSC), switch-and-examine combining (SEC) and switch-and-examine combining with post-examining selection (SECps) schemes which utilize multiple spatially separated antennas at the base station. During the measurements a test subject, wearing an antenna on his chest, performed a number of walking movements towards and then away from a uniform linear array. It was found that all of the considered diversity schemes provided a worthwhile signal improvement. However, the performance of the diversity systems varied according to the switching threshold that was adopted. To model the fading envelope observed at the output of each of the combiners, we have applied diversity specific equations developed under the assumption of Nakagami-$m$ fading. As a measure of the goodness-of-fit, the Kullback-Leibler divergence between the empirical and theoretical probability density functions (PDFs) was calculated and found to be close to 0. To assist with the interpretation of the goodness-of-fit achieved in this study, the standard deviation, $\sigma$, of a zero-mean, $\sigma^2$ variance Gaussian PDF used to approximate a zero-mean, unit variance Gaussian PDF is also presented. These were generally quite close to 1 indicating that the theoretical models provided an adequate fit to the measured data.
Resumo:
Gait disturbances are a common feature of Parkinson’s disease, one of the most severe being freezing of gait. Sensory cueing is a common method used to facilitate stepping in people with Parkinson’s. Recent work has shown that, compared to walking to a metronome, Parkinson’s patients without freezing of gait (nFOG) showed reduced gait variability when imitating recorded sounds of footsteps made on gravel. However, it is not known if these benefits are realised through the continuity of the acoustic information or the action-relevance. Furthermore, no study has examined if these benefits extend to PD with freezing of gait. We prepared four different auditory cues (varying in action-relevance and acoustic continuity) and asked 19 Parkinson’s patients (10 nFOG, 9 with freezing of gait (FOG)) to step in place to each cue. Results showed a superiority of action-relevant cues (regardless of cue-continuity) for inducing reductions in Step coefficient of variation (CV). Acoustic continuity was associated with a significant reduction in Swing CV. Neither cue-continuity nor action-relevance was independently sufficient to increase the time spent stepping before freezing. However, combining both attributes in the same cue did yield significant improvements. This study demonstrates the potential of using action-sounds as sensory cues for Parkinson’s patients with freezing of gait. We suggest that the improvements shown might be considered audio-motor ‘priming’ (i.e., listening to the sounds of footsteps will engage sensorimotor circuitry relevant to the production of that same action, thus effectively bypassing the defective basal ganglia).