89 resultados para Vocal loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques.

METHODS AND MATERIALS: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions.

RESULTS: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk.

CONCLUSIONS: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation. © 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose: To quantify respiratory motion of the vocal cords during normal respiration using 4D-CT. The final goal is to develop a technique for single vocal cord irradiation (SVCI) in early glottic carcinoma. Sparing the non-involved cord and surrounding structures has the potential to preserve voice quality and allow re-irradiation of recurrent and second primary tumors. Material and methods: Four-dimensional CTs of 1 mm slice thickness from 10 early glottic carcinoma patients were acquired. The lateral dimensions of the air gap separating the vocal cords were measured anteriorly, at mid-level and posteriorly at each phase of the 4D-CTs. The corresponding anterior-posterior gaps were similarly measured. Cranio-caudal vocal cords movements during breathing were derived from the shifts of the arythenoids. Results: The population-averaged mean gap size ± the corresponding standard deviation due to breathing (SDB) for the lateral gaps was 5.8 ± 0.7 mm anteriorly, 8.7 ± 0.9 mm at mid-level, and 11.0 ± 1.3 mm posteriorly. Anterior-posterior gap values were 21.7 ± 0.7 mm, while cranio-caudal shift SDB was 0.8 mm. Conclusion: Vocal cords breathing motions were found to be small relative to their separation. Hence, breathing motion does not seem to be a limiting factor for SVCI. © 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents experimental and numerical studies into the hydrodynamic loading of a bottom-hinged large buoyant flap held rigidly upright in waves. Possible applications and limitations of physical experiments, a linear potential analytical method, a linear potential numerical method, a weakly non-linear tool and RANS CFD simulations are discussed. Different domains of applicability of these research techniques are highlighted considering the validity of underlying assumptions, complexity of application and feasibility in terms of resources like time and computing power needed to obtain results. Conclusions are drawn regarding the future extension of the numerical methods to the case of a moving flap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the abundance of studies investigating the performance of composite structures under crush loading, disagreement remains in the literature regarding the effect of increased strain rate on the crush response. This study reports an experimental investigation of the behaviour of a carbon-epoxy composite energy absorber under static and dynamic loading with a strain rate of up to 100s<sup>-1</sup>. Consistent damage modes and measured force responses were obtained in samples tested under the same strain rate. The energy absorption was found to be independent of strain rate as the total energy absorption appeared to be largely associated with fibre-dominated fracture, which is independent of strain rate within the studied range. The results from this study are beneficial for the design of energy absorbing structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to verify clinical target volume-planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion.

METHODS AND MATERIALS: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and after dose delivery. A mixed online-offline setup correction protocol ("O2 protocol") was designed to compensate for both inter- and intrafraction motion.

RESULTS: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm).

CONCLUSIONS: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of wind power in some power systems is hampered by the system requirement for emergency reserve to cover loss of the biggest infeed. The study demonstrates that reserve provision from the wind sector itself has economic and operational benefits. A heuristic algorithm has been developed that can model the relevant aspects of emergency reserve provision in a system with both thermal and wind generations. The proposed algorithm is first validated by comparing its performance with established economic scheduling methods applied to a representative power system. The algorithm is then used to demonstrate the economic benefit of reserve provision from the wind sector. It is shown that such provision reduces wind energy curtailment and thermal unit ramping. Finally, it is shown that a wind sector capable of providing emergency reserve can expand economically beyond the capacity limit that would otherwise apply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strengthening reinforced concrete (RC) structures by externally bonded FRP composites has been widely used for static loading and seismic retrofitting since 1990s. More recently many studies on strengthening concrete and masonry structures with externally bonded FRP for improved blast and impact resistance in protective engineering have also been conducted. The bond behaviour between the FRP and concrete plays a critical role in a strengthening system with externally bonded FRP. However, the understanding of how the bond between FRP and concrete performs under high strain rate is severely limited. Due to the dynamic characteristics of blast and impact loading, the bond behaviour between FRP and concrete under such loading is very different from that under static loading. This paper presents a study on the dynamic bond-slip behaviour based on both the numerical analysis and test results. A dynamic bond-slip model is proposed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stiffness values in geotechnical structures can range over many orders of magnitude for relatively small operational strains. The typical strain levels where soil stiffness changes most dramatically is in the range 0.01-0.1%, however soils do not exhibit linear stress-strain behaviour at small strains. Knowledge of the in situ stiffness at small strain is important in geotechnical numerical modelling and design. The stress-strain regime of cut slopes is complex, as we have different principle stress directions at different positions along the potential failure plane. For example, loading may be primarily in extension near the toe of the slope, while compressive loading is predominant at the crest of a slope. Cuttings in heavily overconsolidated clays are known to be susceptible to progressive failure and subsequent strain softening, in which progressive yielding propagates from the toe towards the crest of the slope over time. In order to gain a better understanding of the rate of softening it would be advantageous to measure changes in small strain stiffness in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability, but most previous research projects and case studies have focused on concretes without cracks or not subjected to any structural load. Although it has been recognised that structural cracks do influence the chloride transport and chloride induced corrosion in reinforced concrete structures, there is little published work on the influence of micro-cracks due to service loads on these properties. Therefore the effect of micro-cracks caused by loading on chloride transport into concrete was studied. Four different stress levels (0%, 25%, 50% and 75% of the stress at ultimate load – fu) were applied to 100 mm diameter concrete discs and chloride migration was measured using a bespoke test setup based on the NT BUILD 492 test. The effects of replacing Portland cement CEMI by ground granulated blast-furnace slag (GGBS), pulverised fuel ash (PFA) and silica fume (SF) on chloride transport in concrete under sustained loading were studied. The results have indicated that chloride migration coefficients changed little when the stress level was below 50% of the fu; however, it is desirable to keep concrete stress less than 25% fu if this is practical. The effect of removing the load on the change of chloride migration coefficient was also studied. A recovery of around 50% of the increased chloride migration coefficient was found in the case of concretes subjected to 75% of the fu when the load was removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate determination of non-linear shear behaviour and fracture toughness of continuous carbon-fibre/polymer composites remains a considerable challenge. These measurements are often necessary to generate material parameters for advanced computational damage models. In particular, there is a dearth of detailed shear fracture toughness characterisation for thermoplastic composites which are increasingly generating renewed interest within the aerospace and automotive sectors. In this work, carbon fibre (AS4)/ thermoplastic Polyetherketoneketone (PEKK) composite V-notched cross-ply specimens were manufactured to investigate their non-linear response under pure shear loading. Both monotonic and cyclic loading were applied to study the shear modulus degradation and progressive failure. For the first time in the reported literature, we use the essential work of fracture approach to measure the shear fracture toughness of continuous fibre reinforced composite laminates. Excellent geometric similarity in the load-displacement curves was observed for ligament-scaled specimens. The laminate fracture toughness was determined by linear regression, of the specific work of fracture values, to zero ligament thickness, and verified with computational models. The matrix intralaminar fracture toughness (ply level fracture toughness), associated with shear loading was determined by the area method. This paper also details the numerical implementation of a new three-dimensional phenomenological model for carbon fibre thermoplastic composites using the measured values, which is able to accurately represent the full non-linear mechanical response and fracture process. The constitutive model includes a new non-linear shear profile, shear modulus degradation and load reversal. It is combined with a smeared crack model for representing ply-level damage initiation and propagation. The model is shown to accurately predict the constitutive response in terms of permanent plastic strain, degraded modulus as well as load reversal. Predictions are also shown to compare favourably with the evolution of damage leading to final fracture.