224 resultados para Virtual objects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affordances have recently been proposed as a guiding principle in perception–action research in sport (Fajen, Riley, & Turvey, 2009). In the present study, perception of the ’passability’ affordance of a gap between two approaching defenders in rugby is explored. A simplified rugby gap closure scenario was created using immersive, interactive virtual reality technology where 14 novice participants (attacker) judged the passability of the gap between two virtual defenders via a perceptual judgment (button press) task. The scenario was modeled according to tau theory (Lee, 1976) and a psychophysical function was fitted to the response data. Results revealed that a tau-based informational quantity could account for 82% of the variance in the data. Findings suggest that the passability affordance in this case, is defined by this variable and participants were able to use it in order to inform prospective judgments as to passability. These findings contribute to our understanding of affordances and how they may be defined in this particular sporting scenario; however, some limitations regarding methodology, such as decoupling perception and action are also acknowledged.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is discussed for measuring the acoustic impedance of tubular objects that gives accurate results for a wide range of frequencies. The apparatus that is employed is similar to that used in many previously developed methods; it consists of a cylindrical measurement duct fitted with several microphones, of which two are active in each measurement session, and a driver at one of its ends. The object under study is fitted at the other end. The impedance of the object is determined from the microphone signals obtained during excitation of the air inside the 1 duct by the driver, and from three coefficients that are pre-determined using four calibration measurements with closed cylindrical tubes. The calibration procedure is based on the simple mathematical relationships between the impedances of the calibration tubes, and does not require knowledge of the propagation constant. Measurements with a cylindrical tube yield an estimate of the attenuation constant for plane waves, which is found to differ from the theoretical prediction by less than 1.4% in the frequency range 1 kHz-20 kHz. Impedance measurements of objects with abrupt changes in diameter are found to be in good agreement with multimodal theory.