393 resultados para Vincent Ferrer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the design, construction and electromagnetic performance of a new freestanding frequency selective surface (FSS) structure which generates coincident spectral responses for dual polarisation excitation at oblique angles of incidence. The FSS is required to allow transmission of 316.5 - 325.5 GHz radiation with a loss = 0.6 dB and to achieve = 30 dB rejection from 349.5 - 358.5 GHz. It should also exhibit crosspolarisation levels below -25 dB, all criteria being satisfied simultaneously for TE and TM polarisations at 45° incidence. The filter consists of two identical, 30 mm diameter, 12.5 ?m thick, optically flat, perforated metal screens separated by 450 ?m. Each of the ˜5000 unit cells contains two nested, short circuited, rectangular loop slots and a rectangular dipole slot. The nested elements provide a passband spectral response centred at 320 GHz in the TE and TM planes; the dipole slot increases the filter roll-off above resonance. The FSS was fabricated from silicon-on-insulator wafers using precision micromachining and plating processes including the use of Deep Reactive Ion Etching (DRIE) to pattern the individual slots and remove the substrate under the periodic arrays. Quasi–optical transmission measurements in the 250 – 360 GHz range yielded virtually identical copolarised spectral responses, with the performance meeting or exceeding the above specifications. Experimental results are in excellent agreement with numerical predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.