125 resultados para Vertically rising aircraft.
Resumo:
Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.
Resumo:
Against a background of point-source outbreaks of Pneumocystis pneumonia (PCP) in renal transplant units in Europe, we undertook a retrospective 3 year observational review of PCP in Northern Ireland. This showed an unexpected increase in incidence, with a mortality rate of 30%. Fifty-one cases were confirmed compared to 10 in the preceding 7 years. Where undiagnosed HIV infection had previously been the main risk factor for PCP, this was now equally matched by chemotherapy for haematological and non-haematological malignancy and immune suppression for a range of autoimmune conditions. Congenital immunodeficiency and transplantation were less common pre-disposing factors, but renal grafts also showed a rising incidence. Asymptomatic carriage was uncommon. At presentation both upper and lower respiratory samples were of equal use in establishing the diagnosis and treatment resulted in rapid clearance. The data suggests the need for considering PCP in at risk patients, reviewing its mode of acquisition and whether iatrogenic colonization is a treatable pre-condition. [Epub ahead of print]
Resumo:
In collaboration with Airbus-UK, the dimensional growth of aircraft panels while being riveted with stiffeners is investigated. Small panels are used in this investigation. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using static stress and nonlinear explicit finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using explicit finite element models. Yet, the static stress finite element model is more time efficient, and more practical to simulate hundreds of rivets and the stochastic nature of the process. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.
Resumo:
In today’s atmosphere of constrained defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. This paper presents a methodology that details a comprehensive and structured process in which to quantitatively explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a assessment environment for use in conjunction with defined technology scenarios, and will have a significant impact on resource allocation strategies for defense acquisition. The advantages and limitations of the method are discussed. In addition, an example TIF application, that of an Uninhabited Combat Aerial Vehicle, is presented and serves to illustrate the applicability of this methodology to a military system.
Resumo:
Military decision makers need to understand and assess the benefits and consequences of their decisions in order to make cost efficient, timely, and successful choices. Technology selection is one such critical decision, especially when considering the design or retrofit of a complex system, such as an aircraft. An integrated and systematic methodology that will support decision-making between technology alternatives and options while assessing the consequences of such decisions is a key enabler. This paper presents and demonstrates, through application to a notional medium range short takeoff and landing (STOL) aircraft, one such enabler: the Technology Impact Forecasting (TIF) method. The goal of the TIF process is to explore both generic, undefined areas of technology, as well as specific technologies, and assess their potential impacts. This is actualized through the development and use of technology scenarios, and allows the designer to determine where to allocate resources for further technology definition and refinement, as well as provide useful design information. The paper particularly discusses the use of technology scenarios and demonstrates their use in the exploration of seven technologies of varying technology readiness levels.
Resumo:
This article looks at the role of commemoration in Northern Ireland before conflict -in the 1960's - and at the height of conflict in the 1970's. Through its comparative examination of Northern Ireland republican commemorations of the 1916 Easter Rising in 1966 and 1976 it is intended to contribute both to an historical and political understanding of commemoration practices in Ireland after partition and to current debates about commemoration and the past in the post-Troubles era.
Resumo:
The increasing need to understand complex products and systems with long life spans, presents a significant challenge to designers who increasingly require a broader understanding of the operational aspects of the system. This demands an evolution in current design practice, as designers are often constrained to provide a subsystem solution without full knowledge of the global system operation. Recently there has been a push to consider value centric approaches which should facilitate better or more rapid convergence to design solutions with predictable completion schedules. Value Driven Design is one such approach, in which value is used as the system top level objective function. This provides a broader view of the system and enables all sub-systems and components to be designed with a view to the effect on project value. It also has the capacity to include value expressions for more qualitative aspects, such as environmental impact. However, application of the method to date has been restricted to comparing value in a programme where the lifespan is fixed and known a priori. This paper takes a novel view of value driven design through the surplus value objective function, and shows how it can be used to identify key sensitivities to guide designers in design trade-off decisions. By considering a new time based approach it can be used to identify optimum programme life-span and hence allow trade-offs over the whole product life.