216 resultados para Vascular smooth muscle cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To characterize the effects of endothelin (ET)-1 on the Ca2+-activated Cl- conductance of choroidal arteriolar smooth muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rat retinae were dissociated to yield intact microvessels 7 to 42 microm in diameter. These were loaded with fura-2 AM and single fragments anchored down in a recording bath. Intracellular Ca(2+) levels from 20- to 30-microm sections of vessel were estimated by microfluorimetry. The vessels studied were identified as metarterioles and arterioles. Only the microvascular smooth muscle cells loaded with fura-2 AM and changes in the fluorescence signal were confined to these cells: Endothelial cells did not make any contribution to the fluorescence signal nor did they contribute to the actions of the drugs. Caffeine (10 mM) or elevated K(+) (100 mM) produced a transient rise in cell Ca(2+) in the larger vessels (diameters >18 microm) but had no effect on smaller vessels (diameters 30 min) on washing out the endothelin and the vessel failed to relax. These results demonstrate heterogeneity between smaller and larger retinal vessels with regard to Ca(2+) mobilisation and homogeneity with respect to the actions of vasoactive peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were performed to determine whether capacitative Ca(2+) entry (CCE) can be activated in canine pulmonary and renal arterial smooth muscle cells (ASMCs) and whether activation of CCE parallels the different functional structure of the sarcoplasmic reticulum (SR) in these two cell types. The cytosolic [Ca(2+)] was measured by imaging fura-2-loaded individual cells. Increases in the cytosolic [Ca(2+)] due to store depletion in pulmonary ASMCs required simultaneous depletion of both the inositol 1,4,5-trisphosphate (InsP(3))- and ryanodine (RY)-sensitive SR Ca(2+) stores. In contrast, the cytosolic [Ca(2+)] rises in renal ASMCs occurred when the SR stores were depleted through either the InsP(3) or RY pathways. The increase in the cytosolic [Ca(2+)] due to store depletion in both pulmonary and renal ASMCs was present in cells that were voltage clamped and was abolished when cells were perfused with a Ca(2+)-free bathing solution. Rapid quenching of the fura-2 signal by 100 microM Mn(2+) following SR store depletion indicated that extracellular Ca(2+) entry increased in both cell types and also verified that activation of CCE in pulmonary ASMCs required the simultaneous depletion of the InsP(3)- and RY-sensitive SR Ca(2+) stores, while CCE could be activated in renal ASMCs by the depletion of either of the InsP(3)- or RY-sensitive SR stores. Store depletion Ca(2+) entry in both pulmonary and renal ASMCs was strongly inhibited by Ni(2+) (0.1-10 mM), slightly inhibited by Cd(2+) (200-500 microM), but was not significantly affected by the voltage-gated Ca(2+) channel (VGCC) blocker nisoldipine (10 microM). The non-selective cation channel blocker Gd(3+) (100 microM) inhibited a portion of the Ca(2+) entry in 6 of 18 renal but not pulmonary ASMCs. These results provide evidence that SR Ca(2+) store depletion activates CCE in parallel with the organization of intracellular Ca(2+) stores in canine pulmonary and renal ASMCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and double-immunofluorescence staining demonstrated that HDAC7 has a parallel expression pattern with SMC marker genes. In ex vivo culture of embryonic cells from SM22-LacZ transgenic mice, overexpression of HDAC7 significantly increased beta-galactosidase-positive cell numbers and enzyme activity, indicating its crucial role in SMC differentiation during embryonic development. We found that HDAC7 undergoes alternative splicing during ES cell differentiation. Platelet-derived growth factor enhanced ES cell differentiation into SMCs through upregulation of HDAC7 splicing. Further experiments revealed that HDAC7 splicing induced SMC differentiation through modulation of the SRF-myocardin complex. These findings suggest that HDAC7 splicing is important for SMC differentiation and vessel formation in embryonic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.