91 resultados para Transparent
Resumo:
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
Resumo:
A new class of polarizing surface is proposed that in a given frequency band can reflect incident linearly polarized waves with circular polarization (CP) while at other frequencies is transparent allowing incident waves to transmit unaffected. The proposed structure consists of two parallel anisotropic frequency selective surfaces (FSSs) that independently interact with TE or TM waves, respectively. The FSSs are designed to, respectively, transmit TE and TM waves within the same transmission frequency range, so that the combined structure is transparent to all polarizations in this band. Likewise, the two arrays are designed to, respectively, reflect TE and TM incident waves in a common reflection band, so that all polarizations are fully reflected in this range; if the separation of the two arrays is such that the TE and TM components of an incident wave polarized at slant 45° experience a 90° phase shift, reflection will occur in CP. The concept and performance limitations are theoretically investigated using transmission line theory as well as full wave results. The predicted performance is validated by means of experimental results on a fabricated prototype. The proposed structure is pertinent for employment as a quasi-optical diplexer in CP dual-band systems such as reflector antennas.
Resumo:
BACKGROUND: Core outcome sets can increase the efficiency and value of research and, as a result, there are an increasing number of studies looking to develop core outcome sets (COS). However, the credibility of a COS depends on both the use of sound methodology in its development and clear and transparent reporting of the processes adopted. To date there is no reporting guideline for reporting COS studies. The aim of this programme of research is to develop a reporting guideline for studies developing COS and to highlight some of the important methodological considerations in the process.
METHODS/DESIGN: The study will include a reporting guideline item generation stage which will then be used in a Delphi study. The Delphi study is anticipated to include two rounds. The first round will ask stakeholders to score the items listed and to add any new items they think are relevant. In the second round of the process, participants will be shown the distribution of scores for all stakeholder groups separately and asked to re-score. A final consensus meeting will be held with an expert panel and stakeholder representatives to review the guideline item list. Following the consensus meeting, a reporting guideline will be drafted and review and testing will be undertaken until the guideline is finalised. The final outcome will be the COS-STAR (Core Outcome Set-STAndards for Reporting) guideline for studies developing COS and a supporting explanatory document.
DISCUSSION: To assess the credibility and usefulness of a COS, readers of a COS development report need complete, clear and transparent information on its methodology and proposed core set of outcomes. The COS-STAR guideline will potentially benefit all stakeholders in COS development: COS developers, COS users, e.g. trialists and systematic reviewers, journal editors, policy-makers and patient groups.
Resumo:
Mental health social workers have a central role in providing support to people with mental health problems and in the use of coercion aimed at dealing with risk. Mental health services have traditionally focused on monitoring symptoms and ascertaining the risks people may present to themselves and/or others. This well-intentioned but negative focus on deficits has contributed to stigma, discrimination and exclusion experienced by service users. Emerging understandings of risk also suggest that our inability to accurately predict the future makes risk a problematic foundation for compulsory intervention. It is therefore argued that alternative approaches are needed to make issues of power and inequality transparent. This article focuses on two areas of practice: the use of recovery based approaches, which promote supported decision making and inclusion; and the assessment of a person’s ability to make decisions, their mental capacity, as a less discriminatory gateway criterion than risk for compulsory intervention.
Resumo:
Context. The detection and measurement of gamma-ray lines from the decaychain of 56Ni provides unique information about the explosionin supernovae. SN2014J at 3.3 Mpc is a sufficiently-nearby supernova oftype Ia so that such measurements have been feasible with the gamma-rayspectrometer SPI on ESA's INTEGRAL gamma-ray observatory.
Aims:The 56Ni freshly produced in the supernova is understood topower the optical light curve, because it emits gamma rays upon itsradioactive decay first to 56Co and then to 56Fe.Gamma-ray lines from 56Co decay are expected to becomedirectly visible through the white dwarf material several weeks afterthe explosion, as they progressively penetrate the overlying material ofthe supernova envelope, which is diluted as it expands. The lines areexpected to be Doppler-shifted or broadened from the kinematics of the56Ni ejecta. We aim to exploit high-resolution gamma-rayspectroscopy with the SPI spectrometer on INTEGRAL toward constrainingthe 56Ni distribution and kinematics in this supernova.
Methods: We use the observations with the SPI spectrometer onINTEGRAL, together with an improved instrumental background method.
Results: We detect the two main lines from 56Co decay at847 and 1238 keV, which are significantly Doppler-broadened, and atintensities (3.65 ± 1.21) × 10-4 and (2.27± 0.69) × 10-4 ph cm-2s-1, respectively, at their brightness maximum. We measuretheir rise toward a maximum after about 60-100 days and a declinethereafter. The intensity ratio of the two lines is found to beconsistent with expectations from 56Co decay (0.62 ±0.28 at brightness maximum, the expected ratio is 0.68). We find thatthe broad lines seen in the late, gamma-ray transparent phase are notrepresentative of the early gamma-ray emission, and notice instead thatthe emission spectrum is complex and irregular until the supernova isfully transparent to gamma rays, with progressive uncovering of the bulkof 56Ni. We infer that the explosion morphology is notspherically symmetric, both in the distribution of 56Ni andin the unburnt material which occults the 56Co emission.After we compare light curves from different plausible models, theresulting 56Ni mass is determined to be 0.49 ± 0.09M⊙.
Resumo:
We consider the problem of regulating the rate of harvesting a natural resource, taking account of the wider system represented by a set of ecological and economic indicators, given differing stakeholder priorities. This requires objective and transparent decision making to show how indicators impinge on the resulting regulation decision. We offer a new scheme for combining indicators, derived from assessing the suitability of lowering versus not lowering the harvest rate based on indicator values relative to their predefined reference levels. Using the practical example of fisheries management under an “ecosystem approach,” we demonstrate how different stakeholder views can be quantitatively represented by weighting sets applied to these comparisons. Using the scheme in an analysis of historical data from the Celtic Sea fisheries, we find great scope for negotiating agreement among disparate stakeholders.
Resumo:
The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals.
Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
Resumo:
Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.
Resumo:
A scheme for enhanced quantum electrodynamics (QED) production of electron-positron-pair plasmas is proposed that uses two ultraintense lasers irradiating a thin solid foil from opposite sides. In the scheme, under a proper matching condition, in addition to the skin-depth emission of gamma-ray photons and Breit-Wheeler creation of pairs on each side of the foil, a large number of high-energy electrons and photons from one side can propagate through it and interact with the laser on the other side, leading to much enhanced gamma-ray emission and pair production. More importantly, the created pairs can be collected later and confined to the center by opposite laser radiation pressures when the foil becomes transparent, resulting in the formation of unprecedentedly overdense and high-energy pair plasmas. Two-dimensional QED particle-in-cell simulations show that electron-positron-pair plasmas with overcritical density 10(22) cm(-3) and a high energy of 100s of MeV are obtained with 10 PW lasers at intensities 10(23) W/cm(2), which are of key significance for laboratory astrophysics studies.
Resumo:
This paper explores the theme of exhibiting architectural research through a particular example, the development of the Irish pavilion for the 14th architectural biennale, Venice 2014. Responding to Rem Koolhaas’s call to investigate the international absorption of modernity, the Irish pavilion became a research project that engaged with the development of the architectures of infrastructure in Ireland in the twentieth and twenty-first centuries. Central to this proposition was that infrastructure is simultaneously a technological and cultural construct, one that for Ireland occupied a critical position in the building of a new, independent post-colonial nation state, after 1921.
Presupposing infrastructure as consisting of both visible and invisible networks, the idea of a matrix become a central conceptual and visual tool in the curatorial and design process for the exhibition and pavilion. To begin with this was a two-dimensional grid used to identify and order what became described as a series of ten ‘infrastructural episodes’. These were determined chronologically across the decades between 1914 and 2014 and their spatial manifestations articulated in terms of scale: micro, meso and macro. At this point ten academics were approached as researchers. Their purpose was twofold, to establish the broader narratives around which the infrastructures developed and to scrutinise relevant archives for compelling visual material. Defining the meso scale as that of the building, the media unearthed was further filtered and edited according to a range of categories – filmic/image, territory, building detail, and model – which sought to communicate the relationship between the pieces of architecture and the larger systems to which they connect. New drawings realised by the design team further iterated these relationships, filling in gaps in the narrative by providing composite, strategic or detailed drawings.
Conceived as an open-ended and extendable matrix, the pavilion was influenced by a series of academic writings, curatorial practices, artworks and other installations including: Frederick Kiesler’s City of Space (1925), Eduardo Persico and Marcello Nizzoli’s Medaglio d’Oro room (1934), Sol Le Witt’s Incomplete Open Cubes (1974) and Rosalind Krauss’s seminal text ‘Grids’ (1979). A modular frame whose structural bays would each hold and present an ‘episode’, the pavilion became both a visual analogue of the unseen networks embodying infrastructural systems and a reflection on the predominance of framed structures within the buildings exhibited. Sharing the aspiration of adaptability of many of these schemes, its white-painted timber components are connected by easily-dismantled steel fixings. These and its modularity allow the structure to be both taken down and re-erected subsequently in different iterations. The pavilion itself is, therefore, imagined as essentially provisional and – as with infrastructure – as having no fixed form. Presenting archives and other material over time, the transparent nature of the space allowed these to overlap visually conveying the nested nature of infrastructural production. Pursuing a means to evoke the qualities of infrastructural space while conveying a historical narrative, the exhibition’s termination in the present is designed to provoke in the visitor, a perceptual extension of the matrix to engage with the future.
Resumo:
We present new X-ray observations obtained with Chandra ACIS-S of the HD 189733 system, consisting of a K-type star orbited by a transiting Hot Jupiter and an M-type stellar companion. We report a detection of the planetary transit in soft X-rays with a significantly deeper transit depth than observed in the optical. The X-ray data favor a transit depth of 6%-8%, versus a broadband optical transit depth of 2.41%. While we are able to exclude several possible stellar origins for this deep transit, additional observations will be necessary to fully exclude the possibility that coronal inhomogeneities influence the result. From the available data, we interpret the deep X-ray transit to be caused by a thin outer planetary atmosphere which is transparent at optical wavelengths, but dense enough to be opaque to X-rays. The X-ray radius appears to be larger than the radius observed at far-UV wavelengths, most likely due to high temperatures in the outer atmosphere at which hydrogen is mostly ionized. We furthermore detect the stellar companion HD 189733B in X-rays for the first time with an X-ray luminosity of log LX = 26.67 erg s-1. We show that the magnetic activity level of the companion is at odds with the activity level observed for the planet-hosting primary. The discrepancy may be caused by tidal interaction between the Hot Jupiter and its host star.
Resumo:
Libertarian paternalism, as advanced by Cass Sunstein, is seriously flawed, but not primarily for the reasons that most commentators suggest. Libertarian paternalism and its attendant regulatory implications are too libertarian, not too paternalistic, and as a result are in considerable tension with ‘thick’ conceptions of human dignity. We make four arguments. The first is that there is no justification for a presumption in favor of nudging as a default regulatory strategy, as Sunstein asserts. It is ordinarily less effective than mandates; such mandates rarely offend personal autonomy; and the central reliance on cognitive failures in the nudging program is more likely to offend human dignity than the mandates it seeks to replace. Secondly, we argue that nudging as a regulatory strategy fits both overtly and covertly, often insidiously, into a more general libertarian program of political economy. Thirdly, while we are on the whole more concerned to reject the libertarian than the paternalistic elements of this philosophy, Sunstein’s work, both in Why Nudge?, and earlier, fails to appreciate how nudging may be manipulative if not designed with more care than he acknowledges. Lastly, because of these characteristics, nudging might even be subject to legal challenges that would give us the worst of all possible regulatory worlds: a weak regulatory intervention that is liable to be challenged in the courts by well-resourced interest groups. In such a scenario, and contrary to the ‘common sense’ ethos contended for in Why Nudge?, nudges might not even clear the excessively low bar of doing something rather than nothing. Those seeking to pursue progressive politics, under law, should reject nudging in favor of regulation that is more congruent with principles of legality, more transparent, more effective, more democratic, and allows us more fully to act as moral agents. Such a system may have a place for (some) nudging, but not one that departs significantly from how labeling, warnings and the like already function, and nothing that compares with Sunstein’s apparent ambitions for his new movement.
Resumo:
The prenatal period is of critical importance in defining how individuals respond to their environment throughout life. Stress experienced by pregnant females has been shown to have detrimental effects on offspring biology in humans and a variety of other species. It also is becoming increasingly apparent that prenatal events can have important consequences for the behavior, health, and productivity of offspring in farmed species. Pregnant cattle may experience many potentially important stressors, for instance, relating to their social environment, housing system and physical environment, interactions with humans and husbandry procedures, and their state of health. We examined the available literature to provide a review of the implications of prenatal stress for offspring welfare in cattle. The long-term effects of dystocia on cattle offspring also are reviewed. To ensure a transparent and repeatable selection process, a systematic review approach was adopted. The research literature clearly demonstrates that prenatal stress and difficult births in beef and dairy cattle both have implications for offspring welfare and performance. Common husbandry practices, such as transport, were shown to influence offspring biology and the importance of environmental variables, including thermal stress and drought, also were highlighted. Maternal disease during pregnancy was shown to negatively impact offspring welfare. Moreover, dystocia-affected calves suffer increased mortality and morbidity, decreased transfer of passive immunity, and important physiological and behavioral changes. This review also identified considerable gaps in our knowledge and understanding of the effects of prenatal stress in cattle. © 2012 American Society of Animal Science. All rights reserved.
Resumo:
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.
Resumo:
We investigate modules over “systematic” rings. Such rings are “almost graded” and have appeared under various names in the literature; they are special cases of the G-systems of Grzeszczuk. We analyse their K-theory in the presence of conditions on the support, and explain how this generalises and unifies calculations of graded and filtered K-theory scattered in the literature. Our treatment makes systematic use of the formalism of idempotent completion and a theory of triangular objects in additive categories, leading to elementary and transparent proofs throughout.