112 resultados para Theory Of Mind
Resumo:
Belief revision characterizes the process of revising an agent’s beliefs when receiving new evidence. In the field of artificial intelligence, revision strategies have been extensively studied in the context of logic-based formalisms and probability kinematics. However, so far there is not much literature on this topic in evidence theory. In contrast, combination rules proposed so far in the theory of evidence, especially Dempster rule, are symmetric. They rely on a basic assumption, that is, pieces of evidence being combined are considered to be on a par, i.e. play the same role. When one source of evidence is less reliable than another, it is possible to discount it and then a symmetric combination operation
is still used. In the case of revision, the idea is to let prior knowledge of an agent be altered by some input information. The change problem is thus intrinsically asymmetric. Assuming the input information is reliable, it should be retained whilst the prior information should be changed minimally to that effect. To deal with this issue, this paper defines the notion of revision for the theory of evidence in such a way as to bring together probabilistic and logical views. Several revision rules previously proposed are reviewed and we advocate one of them as better corresponding to the idea of revision. It is extended to cope with inconsistency between prior and input information. It reduces to Dempster
rule of combination, just like revision in the sense of Alchourron, Gardenfors, and Makinson (AGM) reduces to expansion, when the input is strongly consistent with the prior belief function. Properties of this revision rule are also investigated and it is shown to generalize Jeffrey’s rule of updating, Dempster rule of conditioning and a form of AGM revision.
Resumo:
Simple and powerful: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).
Resumo:
The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of similar to2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.
Resumo:
POINT-AGAPE is an Angle-French collaboration which is employing the Isaac Newton Telescope (INT) to conduct a pixel-lensing survey towards M31. Pixel lensing is a technique which permits the detection of microlensing against unresolved stellar fields. The survey aims to constrain the stellar population in M31, and also the distribution and nature of massive compact halo objects (MACHOs) in both M31 and the Galaxy.
Resumo:
The results of calculations investigating the effects of autodetaching resonances on the multiphoton detachment spectra of H are presented. The R-matrix Floquet method is used, in which the coupling of the ion with the laser field is described non-perturbatively. The laser field is fixed at an intensity of 10 W cm, while frequency ranges are chosen such that the lowest autodetaching states of the ion are excited through a two- or three-photon transition from the ground state. Detachment rates are compared, where possible, to previous results obtained using perturbation theory. An illustration of how non-lowest-order processes, involving autodetaching states, can lead to light-induced continuum structures is also presented. Finally, it is demonstrated that by using a frequency connecting the 1s and 2s states, the probability of exciting the residual hydrogen atom is significantly enhanced.
Resumo:
The R-matrix Floquet approach is applied to study the negative F and Cl ions in a light field. Detachment rates are obtained for detachment processes involving up to three photons. The results obtained in the present approach are compared to other experimental and theoretical results. For two- and three-photon processes reasonable agreement with other calculations has been found, while for two-photon detachment the results agree with the experimental cross sections. The three-photon results are in less good agreement with experiment although the larger error bars make accurate comparisons more difficult. The changes in the detachment behaviour for these ions are compared to each other as well as to the detachment behaviour of H.
Resumo:
A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.
Resumo:
We present a one-dimensional scattering theory which enables us to describe a wealth of effects arising from the coupling of the motional degree of freedom of scatterers to the electromagnetic field. Multiple scattering to all orders is taken into account. The theory is applied to describe the scheme of a Fabry-Perot resonator with one of its mirrors moving. The friction force, as well as the diffusion, acting on the moving mirror is derived. In the limit of a small reflection coefficient, the same model provides for the description of the mechanical effect of light on an atom moving in front of a mirror.