114 resultados para TRIPLET EMISSION
Resumo:
The activation energy for hydrogen abstraction from imidazolium-based ionic liquids is significantly higher than that observed in conventional solvents.
Resumo:
In this paper we demonstrate that the effect of aromatic C-F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di-(pentafluorophinoyl)}-P,P-dipentafluoro-phenylphosphinimidic acid (HF(20)tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X-H vibrations that quench lanthanide emission. The synthesis, full characterisation including X-ray and NMR analysis as well as the photophysical properties of the emissive complexes [Ln(F(20)tpip)(3)], in which Ln=Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Y, Gd, are reported. The photophysical results contrast previous studies, in which fluorination of alkyl chains tends to lead to more emissive lanthanide complexes for both visible and NIR emission. Analysis of the fluorescence properties of the HF(20)tpip and [Gd(F(20)tpip)(3)] reveals that there is a low-lying state at around 715 nm that is responsible for partially quenching of the signal of the visible emitting lanthanides and we attribute it to a pi-sigma* state. However, all visible emitting lanthanides have long lifetimes and unexpectedly the [Dy(F(20)tpip)(3)] complex shows a lifetime of 0.3 ms, indicating that the elimination of high-energy vibrations from the ligand framework is particularly favourable for Dy. The NIR emitting lanthanides show strong emission signals in powder and solution with unprecedented lifetimes. The luminescence lifetimes of [Nd(F(20)tpip)(3)], [Er(F(20)tpip)(3)] and [Yb(F(20)tpip)(3)] in deuteurated acetonitrile are 44, 741 and 1111 mu s. The highest value observed for the [Yb(F(20)tpip)(3)] complex is more than half the value of the Yb ion radiative lifetime.
Resumo:
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T-e) and density (N-e) emission line ratios involving both the nebular (5517.7, 5537.9 Angstrom) and auroral (8433.9, 8480.9, 8500.0 Angstrom) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R-1 = /(5518 Angstrom)/I(5538 Angstrom) intensity ratio provides estimates of N-e in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R-1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl III] 8433.9 Angstrom line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl III] intensity may be reliably measured, it provides accurate determinations of T-e when ratioed against the sum of the 5518 and 5538 Angstrom line fluxes. Similarly, the 8500.0 Angstrom line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [CI III] transition at 8480.9 Angstrom is found to be blended with the He I 8480.7 Angstrom line, except in planetary nebulae that show a relatively weak He I spectrum, where it also provides reliable estimates of T-e when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl III] lines at 3344 and 3354 Angstrom is briefly discussed.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å.
Resumo:
We present an occultation of the newly discovered hot Jupiter system WASP-19, observed with the High Acuity Wide-field K-band Imager instrument on the VLT, in order to measure thermal emission from the planet's dayside at ~2µm. The light curve was analysed using a Markov Chain Monte Carlo method to find the eclipse depth and the central transit time. The transit depth was found to be 0.366 +/- 0.072 per cent, corresponding to a brightness temperature of 2540 +/- 180 K. This is significantly higher than the calculated (zero-albedo) equilibrium temperature and indicates that the planet shows poor redistribution of heat to the night side, consistent with models of highly irradiated planets. Further observations are needed to confirm the existence of a temperature inversion and possibly molecular emission lines. The central eclipse time was found to be consistent with a circular orbit.