261 resultados para Structural engineering.
Resumo:
Ettringite and thaumasite can be found among the deterioration products of cementitious materials exposed to sulfate and hydrochloric attack. The results of a test program to investigate the acid resistance of self-compacting concrete (SCC) and conventional concrete (CC), immersed up to 18 weeks at 20°C in sulfuric and hydrochloric acid solutions, are described. The SCC was prepared with 47% carboniferous limestone powder, as a replacement for cement, and an ordinary portland cement. The CC was prepared with portland cement only. The water-binder ratios of the SCC and CC were 0.36 and 0.46, respectively. The parameter investigated was the time, in weeks, taken to cause 10% mass loss of fully immersed concrete specimens in a 1% solution of sulfuric acid and the same amount of loss in a 1% solution of hydrochloric acid. The investigation indicated that the SCC performed better than the CC in sulfuric solution but was slightly more vulnerable to hydrochloric acid attack compared to CC. The mode of attack between the two solutions was different.
Resumo:
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.
Resumo:
A dynamic mathematical model for simulating the coupled heat and moisture migration through multilayer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.
Resumo:
The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor environment and the overall performance of buildings. In this paper, a model for predicting whole building heat and moisture transfer was presented. Both heat and moisture transfer in the building envelope and indoor air were simultaneously considered; their interactions were modeled. The coupled model takes into account most of the main hygrothermal effects in buildings. The coupled system model was implemented in MATLAB-Simulink, and validated by using a series of published testing tools. The new program was applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption under different climates. The results show that the use of more detailed simulation routines can result in improvements to the building's design for energy optimisation through the choice of proper hygroscopic materials, which would not be indicated by simpler calculation techniques.
Resumo:
This paper presents the experimental results of loading tests on two 18m span tapered member portal frames designed to BS 5950. Deflection test results for vertical, lateral and combined loading cases are compared with the predictions given by elastic analysis to BS 5950 and shown to be favourable. The predicted ultimate capacities and modes of failure, which were by lateral-torsional buckling of the columns, were also found to agree with the experimental behaviour. It was found that the method of modelling the tapered members as a series of prismatic elements gave good comparison with test results.
Resumo:
To increase the structural efficiency of integrally machined aluminium alloy stiffened panels, it is plausible to introduce plate sub-stiffening to increase the local stability and thus panel static strength performance. Reported herein is the experimental validation of prismatic sub-stiffening, and the computational verification of such concepts within larger recurring structure. The experimental work demonstrates the potential to 'control' plate buckling modes. For the tested sub-stiffening design, an initial plate buckling performance gain of +89% over an equivalent mass design was measured. The numerical simulations, modelling the tested sub-stiffening design, demonstrate equivalent behaviour and performance gains (+66%) within larger structures consisting of recurring panels. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An investigation of carbonation in mortars and methods of measuring the degree of carbonation and pH change is presented. The mortars were manufactured using ordinary portland cement, pulverized fuel ash, ground granulated blast-furnace slag, metakaolin, and microsilica. The mortars were exposed to a carbon dioxide-rich environment 5% CO2 to accelerate carbonation. The resulting carbonation was measured using phenolphthalein indicator and thermogravimetric analysis. The pH of the pore fluid and a powdered sample, extracted from the mortar, was measured to give an accurate indication of the actual pH of the concrete. The pH of the extracted powder mortar sample was found to be similar to the pH of the pore fluid expressed from the mortars. The thermogravimetric analysis suggested two distinct regions of transport of CO2 within mortar, a surface region where convection was prevalent and a deeper region where diffusion was dominant. The use of microsilica has been shown to decrease the rate of carbonation, while pulverized fuel ash and ground granulated blast-furnace slag have a detrimental effect on carbonation. Metakaolin has little effect on carbonation.
Resumo:
Sustainability is now recognised as a key issue that must be addressed in the design, construction and lifelong maintenance of civil engineering structures. This paper briefly discusses the generic aspects of sustainability, but the main focus is its application to bridges. Motorway bridges built in the 1960s and 1970s had design lives of 120 years; many, however, were showing signs of deterioration after only 20–40 years. This led to much (ongoing) debate on the issue of initial versus full life-cycle costing. In order to address the highly complex issue of the sustainability of bridges, this paper considers the following specific areas that impinge on this important subject: the impact on sustainability of different forms of bridge construction and maintenance/repair/replacement strategies; the utilisation of innovative in situ testing equipment for assessing the long-term durability of concrete; the development of innovative structural designs for bridges that inherently have greatly extended lives at minimal, if any, additional cost.