92 resultados para Stars: mass-loss


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Herbig Ae/Be stars are intermediate mass pre-main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X-shooter to address this issue from a multi-wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near-infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 µm line. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the DONUTS autoguiding algorithm, designed to fix stellar positions at the sub-pixel level for high-cadence time-series photometry, and also capable of autoguiding on defocused stars. DONUTS was designed to calculate guide corrections from a series of science images and recentre telescope pointing between each exposure. The algorithm has the unique ability of calculating guide corrections from undersampled to heavily defocused point spread functions. We present the case for why such an algorithm is important for high precision photometry and give our results from off and on-sky testing. We discuss the limitations of DONUTS and the facilities where it soon will be deployed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present time-resolved J-band spectroscopy of the short-period cataclysmic variable SDSS J143317.78+101123.3. We detect absorption lines from the sub-stellar donor star in this system, which contributes 38 +/- 5 per cent to the J-band light. From the relative strengths of the absorption lines in the J band, we estimate the spectral type of the donor star to be L2 +/- 1. These data are the first spectroscopic detection of a donor with a confirmed sub-stellar mass in a cataclysmic variable, and the spectral type is consistent with that expected from semi-empirical evolutionary models.

Using skew mapping, we have been able to derive an estimate for the radial velocity of the donor of K-d = 520 +/- 60 km/s. This value is consistent with, though much less precise than, predictions from mass determinations found via photometric fitting of the eclipse light curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stellar activity, such as starspots, can induce radial velocity (RV) variations that can mask or even mimic the RV signature of orbiting exoplanets. For this reason RV exoplanet surveys have been unsuccessful when searching for planets around young, active stars and are therefore failing to explore an important regime which can help to reveal how planets form and migrate. This paper describes a new technique to remove spot signatures from the stellar line-profiles of moderately rotating, active stars (v sin i ranging from 10 to 50 km s(-1)). By doing so it allows planetary RV signals to be uncovered. We used simulated models of a G5V type star with differing dark spots on its surface along with archive data of the known active star HD 49933 to validate our method. The results showed that starspots could be effectively cleaned from the line-profiles so that the stellar RV jitter was reduced by more than 80 per cent. Applying this procedure to the same models and HD 49933 data, but with fake planets injected, enabled the effective removal of starspots so that Jupiter mass planets on short orbital periods were successfully recovered. These results show that this approach can be useful in the search for hot-Jupiter planets that orbit around young, active stars with a v sin i of similar to 10-50 km/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ \mj and radius 1.653$^{+0.090}_{-0.083}$ \rj. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ \mj and $0.672^{+0.049}_{-0.046}$ \mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ \rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ \rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively. WASP-56b and WASP-57b show no radius anomaly and a high density possibly implying a large core of heavy elements; possibly as high as $\sim$50 M$_{\oplus}$ in the case of WASP-57b. However, the composition of the deep interior of exoplanets remain still undetermined. Thus, more exoplanet discoveries such as the ones presented in this paper, are needed to understand and constrain giant planets' physical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only
good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph
on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47+0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm−3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35+0.09 −0.04 R⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm−3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 x 10(42) erg s(-1) and duration similar to 90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(Ni-56) = 0.040 +/- 0.015 M-circle dot from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M-circle dot, an initial progenitor radius of 1.6 x 10(13) cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M-circle dot was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of lowluminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 103 km s-1 is inferred from measurements at the end of the plateau. The 56Ni masses ejected in the explosion are very small (≤10-2 M⊙). We investigate the correlations among 56Ni mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more 56Ni. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10-15 M⊙. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progenitors of many Type II core-collapse supernovae (SNe) have now been identified directly on pre-discovery imaging. Here, we present an extensive search for the progenitors of Type Ibc SNe in all available pre-discovery imaging since 1998. There are 12 Type Ibc SNe with no detections of progenitors in either deep ground-based or Hubble Space Telescope archival imaging. The deepest absolute BVR magnitude limits are between -4 and - 5 mag. We compare these limits with the observed Wolf-Rayet population in the Large Magellanic Cloud and estimate a 16 per cent probability that we have failed to detect such a progenitor by chance. Alternatively, the progenitors evolve significantly before core-collapse or we have underestimated the extinction towards the progenitors. Reviewing the relative rates and ejecta mass estimates from light-curve modelling of Ibc SNe, we find both incompatible with Wolf-Rayet stars with initial masses >25 M⊙ being the only progenitors. We present binary evolution models that fit these observational constraints. Stars in binaries with initial masses ≲ 20 M⊙ lose their hydrogen envelopes in binary interactions to become low-mass helium stars. They retain a low-mass hydrogen envelope until ≈104 yr before core-collapse; hence, it is not surprising that Galactic analogues have been difficult to identify.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the multiplicity properties of 408 B-type stars observed in the 30 Doradus region of the Large Magellanic Cloud with multi-epoch spectroscopy from the VLT-FLAMES Tarantula Survey (VFTS). We use a cross-correlation method to estimate relative radial velocities from the helium and metal absorption lines for each of our targets. Objects with significant radial-velocity variations (and with an amplitude larger than 16 km s<sup>-1</sup>) are classified as spectroscopic binaries. We find an observed spectroscopic binary fraction (defined by periods of <10<sup>3.5</sup> d and mass ratios >0.1) for the B-type stars, f<inf>B</inf>(obs) = 0.25 ± 0.02, which appears constant across the field of view, except for the two older clusters (Hodge 301 and SL 639). These two clusters have significantly lower binary fractions of 0.08 ± 0.08 and 0.10 ± 0.09, respectively. Using synthetic populations and a model of our observed epochs and their potential biases, we constrain the intrinsic multiplicity properties of the dwarf and giant (i.e. relatively unevolved) B-type stars in 30 Dor. We obtain a present-day binary fraction f<inf>B</inf>(true) = 0.58 ± 0.11, with a flat period distribution. Within the uncertainties, the multiplicity properties of the B-type stars agree with those for the O stars in 30 Dor from the VFTS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Do extrasolar planets affect the activity of their host stars? Indications for chromospheric activity enhancement have been found for a handful of targets, but in the X-ray regime, conclusive observational evidence is still missing. Aims: We want to establish a sound observational basis to confirm or reject major effects of Star-Planet Interactions (SPI) in stellar X-ray emissions. Methods: We therefore conduct a statistical analysis of stellar X-ray activity of all known planet-bearing stars within 30 pc distance for dependencies on planetary parameters such as mass and semimajor axis. Results: In our sample, there are no significant correlations of X-ray luminosity or the activity indicator L_X/L_bol with planetary parameters which cannot be explained by selection effects. Conclusions: Coronal SPI seems to be a phenomenon which might only manifest itself as a strong effect for a few individual targets, but not to have a major effect on planet-bearing stars in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.