143 resultados para Semantic technologies
Resumo:
Extended review.
Turning the tide: A critique of Natural Semantic Metalanguage from a translation studies perspective
Resumo:
Starting from the premise that human communication is predicated on translational phenomena, this paper applies theoretical insights and practical findings from Translation Studies to a critique of Natural Semantic Metalanguage (NSM), a theory of semantic analysis developed by Anna Wierzbicka. Key tenets of NSM, i.e. (1) culture-specificity of complex concepts; (2) the existence of a small set of universal semantic primes; and (3) definition by reductive paraphrase, are discussed critically with reference to the notions of untranslatability, equivalence, and intra-lingual translation, respectively. It is argued that a broad spectrum of research and theoretical reflection in Translation Studies may successfully feed into the study of cognition, meaning, language, and communication. The interdisciplinary exchange between Translation Studies and linguistics may be properly balanced, with the former not only being informed by but also informing and interrogating the latter.
Resumo:
Web databases are now pervasive. Such a database can be accessed via its query interface (usually HTML query form) only. Extracting Web query interfaces is a critical step in data integration across multiple Web databases, which creates a formal representation of a query form by extracting a set of query conditions in it. This paper presents a novel approach to extracting Web query interfaces. In this approach, a generic set of query condition rules are created to define query conditions that are semantically equivalent to SQL search conditions. Query condition rules represent the semantic roles that labels and form elements play in query conditions, and how they are hierarchically grouped into constructs of query conditions. To group labels and form elements in a query form, we explore both their structural proximity in the hierarchy of structures in the query form, which is captured by a tree of nested tags in the HTML codes of the form, and their semantic similarity, which is captured by various short texts used in labels, form elements and their properties. We have implemented the proposed approach and our experimental results show that the approach is highly effective.
Resumo:
Chapter eleven on Mm-wave broadband wireless systems and enabling MMIC technologies, is contributed by Jian Zhang, Mury Thian, Guochi Huang, George Goussetis and Vincent F. Fusco, from Queen's University Belfast, UK. Millimeter wave bands provide large available bandwidths for high data rate wireless communication systems, which are envisaged to shift data throughput well in the GBps range. This capability has over past few years driven rapid developments in the technology underpinning broadband wireless systems as well as in the standardisation activity from various non-governmental consortia and the band allocation from spectrum regulators globally. This chapter provides an overview of the recent developments on V-band broadband wireless systems with the emphasis placed on enabling MMIC technologies. An overview of the key applications and available standards is presented. System-level architectures for broadband wireless applications are being reviewed. Examples of analysis, design and testing on MMIC components in SiGe BiCMOS are presented and the outlook of the technology is discussed.
Resumo:
The R-matrix method when applied to the study of intermediate energy electron scattering by the hydrogen atom gives rise to a large number of two electron integrals between numerical basis functions. Each integral is evaluated independently of the others, thereby rendering this a prime candidate for a parallel implementation. In this paper, we present a parallel implementation of this routine which uses a Graphical Processing Unit as a co-processor, giving a speedup of approximately 20 times when compared with a sequential version. We briefly consider properties of this calculation which make a GPU implementation appropriate with a view to identifying other calculations which might similarly benet.
Resumo:
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Resumo:
In this paper, we introduce an application of matrix factorization to produce corpus-derived, distributional
models of semantics that demonstrate cognitive plausibility. We find that word representations
learned by Non-Negative Sparse Embedding (NNSE), a variant of matrix factorization, are sparse,
effective, and highly interpretable. To the best of our knowledge, this is the first approach which
yields semantic representation of words satisfying these three desirable properties. Though extensive
experimental evaluations on multiple real-world tasks and datasets, we demonstrate the superiority
of semantic models learned by NNSE over other state-of-the-art baselines.
Resumo:
Computational models of meaning trained on naturally occurring text successfully model human performance on tasks involving simple similarity measures, but they characterize meaning in terms of undifferentiated bags of words or topical dimensions. This has led some to question their psychological plausibility (Murphy, 2002; Schunn, 1999). We present here a fully automatic method for extracting a structured and comprehensive set of concept descriptions directly from an English part-of-speech-tagged corpus. Concepts are characterized by weighted properties, enriched with concept-property types that approximate classical relations such as hypernymy and function. Our model outperforms comparable algorithms in cognitive tasks pertaining not only to concept-internal structures (discovering properties of concepts, grouping properties by property type) but also to inter-concept relations (clustering into superordinates), suggesting the empirical validity of the property-based approach. Copyright © 2009 Cognitive Science Society, Inc. All rights reserved.
Resumo:
Achieving a clearer picture of categorial distinctions in the brain is essential for our understanding of the conceptual lexicon, but much more fine-grained investigations are required in order for this evidence to contribute to lexical research. Here we present a collection of advanced data-mining techniques that allows the category of individual concepts to be decoded from single trials of EEG data. Neural activity was recorded while participants silently named images of mammals and tools, and category could be detected in single trials with an accuracy well above chance, both when considering data from single participants, and when group-training across participants. By aggregating across all trials, single concepts could be correctly assigned to their category with an accuracy of 98%. The pattern of classifications made by the algorithm confirmed that the neural patterns identified are due to conceptual category, and not any of a series of processing-related confounds. The time intervals, frequency bands and scalp locations that proved most informative for prediction permit physiological interpretation: the widespread activation shortly after appearance of the stimulus (from 100. ms) is consistent both with accounts of multi-pass processing, and distributed representations of categories. These methods provide an alternative to fMRI for fine-grained, large-scale investigations of the conceptual lexicon. © 2010 Elsevier Inc.