98 resultados para SUBSTRATE SPECIFICITY
Resumo:
Novel V-band substrate integrated waveguide (SIW) filters have been presented. Design procedures for the filters synthesis and mechanisms providing quasi-elliptic response have been explained. The insertion loss of the filters has been measured below 2 dB with microstrip-to-SIW transitions being included.
Resumo:
A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i) the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii) cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii) the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs) in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.
Resumo:
Phosphonates constitute a class of natural products that mimic the properties of the more common organophosphate ester metabolite yet are not readily degraded owing to the direct linkage of the phosphorus atom to the carbon atom. Phosphonate hydrolases have evolved to allow bacteria to utilize environmental phosphonates as a source of carbon and phosphorus. The work reported in this paper examines one such enzyme, phosphonoacetate hydrolase. By using a bioinformatic approach, we circumscribed the biological range of phosphonoacetate hydrolase to a select group of bacterial species from different classes of Proteobacteria. In addition, using gene context, we identified a novel 2-aminoethylphosphonate degradation pathway in which phosphonoacetate hydrolase is a participant. The X-ray structure of phosphonoformate-bound phosphonoacetate hydrolase was determined to reveal that this enzyme is most closely related to nucleotide pyrophosphatase/diesterase, a promiscuous two-zinc ion metalloenzyme of the alkaline phosphatase enzyme superfamily. The X-ray structure and metal ion specificity tests showed that phosphonoacetate hydrolase is also a two-zinc ion metalloenzyme. By using site-directed mutagenesis and P-32-labeling strategies, the catalytic nucleophile was shown to be Thr64. A structure-guided, site-directed mutation-based inquiry of the catalytic contributions of active site residues identified Lys126 and Lys128 as the most likely candidates for stabilization of the aci-carboxylate dianion leaving group. A catalytic mechanism is proposed which combines Lys12/Lys128 leaving group stabilization with zinc ion activation of the Thr64 nucleophile and the substrate phosphoryl group.
Resumo:
The article highlights new insights into production of thin titania films widely used as catalyst support in many modern reactors including capillary microreactors, microstructured fixed-bed reactors and falling film microreactors. Dip-coating of a Mania sol onto a Si substrate has been studied in the range of the sol viscosities of 1.5-2.5 mPa s and the sol withdrawal rates of 0.2-18 mm/s. Different viscosities of sols were created by addition of desired amounts of nitric acid to the synthesis mixture of titanium isopropoxide and Plutonic F127 in ethanol which allowed to control the rate of the condensation reactions. Uniform inesoporous titania coatings were obtained at the solvent withdrawal rates below 10 mm/s at sol viscosities in the range from 1.6 mPa s to 2.5 mPa s. There exists a limiting withdrawal rate corresponding to a capillary number of ca. 0.01 beyond which uniform titania films cannot be obtained. Below the limiting withdrawal rate, the coating thickness is a power function of the sol viscosity and withdrawal rate, both with an exponent of 2/3. The limiting withdrawal rate increases as the solvent evaporation rate increases and it decreases as the sol viscosity increases. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
A method for the hydrothermal synthesis of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications has been developed. Before the hydrothermal synthesis, the surface of the substrate was modified by an etching procedure that increases the roughness at the nanoscale level without completely eliminating the surface lay structure. Then, thin films of Al2O3 (170 nm) and TiO2 (50 nm) were successively deposited by atomic layer deposition (ALD) on the substrate. The internal Al2O3 film protects the Mo substrate from oxidation up to 550 degrees C in an oxidative environment. The high wettability of the external TiO2 film after UV irradiation increases zeolite nucleation on its surface. The role of the metal precursor (TiCl4 vs TiI4), deposition temperature (300 vs 500 degrees C), and film thickness (50 vs 100 nm) was investigated to obtain titania films with the slowest decay in the superhydrophilic behavior after UV irradiation. Zeolite Beta coatings with a Si/Al ratio of 23 were grown at 140 degrees C for 48 It. After ion exchange with a 10(-4) M cobalt acetate solution, the activity of the coatings was determined in the ammoxidation of ethylene to acetonitrile in a microstructured reactor. A maximum reaction rate of 220 mu mol C2H3N g(-1) s(-1) was obtained at 500 degrees C, with 42% carbon selectivity to acetonitrile. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A simple dry chemistry time-resolved fluorescence immunoassay (TR-FIA) method was developed for the measurement of zeranol in bovine urine samples. The samples were purified by immunoaffinity chromatography and a specificity-enhanced zeranol antibody was employed in the immunoassay. This resulted in a highly selective method, which had only negligible reactivity with Fusarium spp, toxins. The all-in-one-well dry chemistry concept made the assay very simple to use because all the assay-specific reagents were already present in the reaction wells in dry form. Only the addition of diluted sample extract was required to perform the competitive one-step TR-FIA and the results were available in less than 1 h. The analytical limit of detection (mean + 3s) for the immunoassay was 0.16 ng ml(-1) (n=12) and the functional limit of detection for the whole method, estimated by the analysis of zeranol-free samples, was 1.3 ng ml(-1) (n=20). The recovery of zeranol at the level of 2 ng ml(-1) was 99% (n=18) and the within-assay variation ranged between 4.5 and 9.0%.
Resumo:
Immunoaffinity chromatography (IAC) and affinity chromatography (AC:) are widely used for extraction of drugs from biological samples. Fifteen column types were purchased from five different manufacturers and;their ability to bind specific drugs including beta-agonists and anabolic steroids over a range of analyte concentrations in fortified bovine urine samples was assessed. The performance data obtained from these columns were compared with columns produced in this laboratory (in house columns). The in house columns gave the highest recoveries, ranging from 92 to 100% at the 1 ng spiking concentration, for five of the seven analytes assessed. Forty percent (11 of 27) of all the commercial column assessments recorded recoveries of less than 50% even when the lowest spiking concentration was applied (1 ng). For one manufacturer, only one of seven different columns purchased delivered extraction efficiencies greater than 50%. The extraction efficiencies of the clenbuterol columns were the highest with all commercially prepared columns showing at least 50% binding of radiolabelled tracer. Recoveries of alpha-nortestosterone were the lowest. The variability of these products with respect to quality control requires constant monitoring.
Resumo:
Steroids form a structurally closely related group. As a result, antibodies produced for use in immunoassays regularly show unwanted cross-reactivities, These may be reduced by altering hapten-protein coupling procedures, thereby reducing the exposure of the determinants giving rise to the undesirable cross-reaction. However, these procedures carl prove to be complex, expensive and nor totally predictable in outcome. Exploitation of the clonal selection theory is an attractive alternative approach. The host is primed with the interfering cross-reactant coupled to a non-immunogenic amino acid copolymer to inactivate the B-lymphocyte clones specific for this steroid, producing a specific immunotolerance. Then, 3 days Inter, the host is immunized with the steroid against which nn antibody is required. The clones producing antibody to this immunogen are unaffected and the cross-reactivity is significantly reduced or deleted The technique has been applied to the reduction of endogenous sex steroid cross-reactivity from antibodies prepared against synthetic and semi-synthetic androgens (17 alpha-methyltestosterone, 19-nor-beta-testosterone) and the progestogen medroxyprogesterone. Antibodies prepared against the synthetic oestrogen zeranol using this technique have significantly reduced its undesirable cross-reactivity with the fungal metabolite 7 alpha-zearalenol. Highly specific antisera have been generated in all cases, the only adverse effect being a reduction in the titres achieved in comparison with rabbits receiving the conventional immunizing regime.
Resumo:
Purpose The retinal pigment epithelium (RPE) and underlying Bruch’s membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell–substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch’s membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this “aged” substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. Methods Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. Results Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. Conclusions This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch”s membrane could play a significant role in age-related dysfunction of the RPE.