204 resultados para SUB-TELOMERES
Resumo:
A freshly dead bigeye tuna Thunnus obesus was washed ashore near Burry Port, Wales (51 degrees 40' N; 4 degrees 15' W) in August, 2006. This is only the third occasion that the species has been observed in British waters, and is the largest and most northerly recorded specimen.
Resumo:
The mechanism of CO oxidation reactions over undoped and gold-doped CuMnOX (Hopcalite) catalysts has been examined using a temporal analysis of products (TAP) reactor Gold doping has been found to increase the activity of the mixed oxide catalyst significantly however using consecutive pulsing TAP experiments the presence of gold was not found to affect the contribution of the Langmuir-Hinshelwood mechanism Conversely gold doping was found to promote the Mars van Krevelen mechanism Using CO and O-2 multi-pulse TAP experiments the gold was found to modify the catalyst surface such that it stores much more oxygen that is active for the CO oxidation The CO multi-pulse experiments indicated that two distinct types of active oxygen species were found to be involved in the CO oxidation One type was observed in a similar amount on both doped and undoped catalysts and was associated with mixed oxide while the second type was only found on the gold-doped catalyst and was therefore clearly associated with the presence of gold on the catalyst surface The latter was found to be much less active than the oxygen inherent to the oxide but was at a concentration of approximately 10 times larger leading to the enhanced activity observed on gold doping (C) 2010 Elsevier Inc All rights reserved
Resumo:
A fast and accurate analysis and synthesis technique for high-gain sub-wavelength 2-D Fabry-Perot leaky-wave antennas (LWA) consisting of two periodic metallodielectric arrays over a ground plane is presented. Full-wave method of moments (MoM) together with reciprocity is employed for the estimation of the near fields upon plane wave illumination and the extraction of the radiation patterns of the LWA. This yields a fast and rigorous tool for the characterisation of this type of antennas. A thorough convergence study for different antenna designs is presented and the operation principles of these antennas as well as the radiation characteristics are discussed. Moreover, design guidelines to tailor the antenna profile, the dimensions of the arrays as well as the antenna directivity and bandwidth are provided. A study on the radiation efficiency for antennas with different profiles is also presented and the trade off between directivity and radiation bandwidth is discussed. Numerical examples are given throughout to demonstrate the technique. A finite size antenna model is simulated using commercial software (CST Microstripes 2009) which validates the technique.
Resumo:
Maintenance of telomeres—specialized complexes that protect the ends of chromosomes, is undertaken by the enzyme complex telomerase, which is a key factor that is activated in more than 80% of cancer cells, but is absent in most normal cells. Targeting telomere maintenance mechanisms could potentially halt tumour growth across a broad spectrum of cancer types, with little cytotoxic effect outside cancer cells. Here, we describe in detail a new class of G-quadruplex binding ligands synthesized using a click chemistry approach. These ligands comprise a 1,3-di(1,2,3-triazol-4-yl)benzene pharmacophore, and display high levels of selectivity for interaction with G-quadruplex DNA vs. duplex DNA. The ability of these ligands to inhibit the enzymatic activity of telomerase correlates with their ability to stabilize quadruplex DNA, and with estimates of affinity calculated by molecular modeling.
Resumo:
Background BRCA1 and cyclin D1 are both essential for normal breast development and mutation or aberration of their expression is associated with breast cancer [1,2]. Cyclin D1 is best known as a G1 cyclin where it regulates the G1 to S phase transition by acting as a rate-limiting subunit of CDK4/6 kinase activity. More recently, however, Stacey has demonstrated that cyclin D1 levels in G2/M determine whether a cell continues to proliferate or exits the cell cycle [3]. The majority of BRCA1 in the cell is bound to BARD1 through their N-terminal RING domains. Heterodimerization is essential for the stability and correct localization of the complex and confers ubiquitin ligase activity to BRCA1. The importance of the ligase activity of BRCA1 to breast cancer development is inferred from the fact that N-terminal diseaseassociated mutations are proposed to reduce ligase activity [4]. Methods Protein–protein interactions were demonstrated using yeast-two-hybrid and coimmunoprecipitation. Protein levels were altered through overexpression, siRNA and antisense technology. The effect of proteasome inhibitors and cycloheximide treatment was also examined. Results We initially identified cyclin D1 as a binding partner of BARD1 in a yeast-two-hybrid screen and defined the minimal binding region as the N-terminus of BARD1. This interaction was confirmed in vivo by coimmunoprecipitation. The N-terminus of BARD1 also binds BRCA1 and imparts ubiquitin ligase activity to the complex. Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Traditionally polyubiquitin chains linked through lysine 48 target proteins for degradation by the 26 S proteasome. We have demonstrated that cyclin D1 protein levels are inversely related to BRCA1 and BARD1 levels in several model systems. Furthermore, regulation of cyclin D1 levels occurs through a post-transcriptional mechanism and requires the ligase activity of BRCA1. Interestingly, this phenomenon is cell-cycle regulated, occurring in G2/M. Conclusion We propose that cyclin D1 is a potential substrate for BRCA1 ubiquitination and that this targets cyclin D1 for proteasomal-mediated degradation. Future work will focus on ascertaining the functional consequence of cyclin D1 regulation by the BRCA1–BARD1 complex; in particular, the impact of BRCA1, mediated through regulation of cyclin D1, on the proliferation versus differentiation decision.
Resumo:
This communication investigates the potential for fabrication of micromachined silicon sub-millimeter wave periodic arrays of freestanding slot frequency selective surfaces (FSS) using wet etch KOH technology. The vehicle for this is an FSS for generating circularly polarized signals from an incident linearly polarized signal at normal incidence to the structure. Principal issues and fabrication processes involved from the initial design of the core FSS structures to be made and tested through to their final testing are addressed. Measured and simulated results for crossed and ring slot element shapes in single and double layer polarization convertor structures are presented for sub-mm wave operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one layer perforated screen design and that the rate of change is lower than the double layer structures. An insertion loss of 1.1 dB can be achieved for the split circular ring double layer periodic array. These results are shown to be compatible with the more specialized fabrication equipment dry reactive ion etching approach previously used for the construction of this type of structure. © 2011 IEEE.
Resumo:
Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The introduction of skin sub-stiffening features has the potential to modify the local stability and fatigue crack growth performance of stiffened panels. Proposed herein is a method to enable initial static strength sizing of panels with such skin sub-stiffening features. The method uses bespoke skin buckling coefficients, automatically generated by Finite Element analysis and thus limits the modification to the conventional aerospace panel initial sizing process. The approach is demonstrated herein and validated for prismatic sub-stiffening features. Moreover, examination of the generated buckling coefficient data illustrates the influence of skin sub-stiffening on buckling behavior, with static strength increases typically corresponding to a reduction in the number of initial skin longitudinal buckle half-waves.