86 resultados para SEMICONDUCTOR NANOCRYSTALLITES
Resumo:
Controlled periodic illumination is a hypothesis postulated in the early 1990s for enhancing the efficiency of semiconductor photocatalytic reactions. This technique has been proposed to improve photocatalytic efficiency by the nature of photon introduction alone. Before its application in semiconductor photocatalysis, controlled periodic illumination had been investigated in other fields including photosynthesis. This paper presents a detailed review of the state of the art research undertaken on the application of controlled periodic illumination in semiconductor photocatalysis. The review briefly introduces semiconductor photocatalysis, and then presents a detailed explanation of this technique, its importance to photocatalytic efficiency, an overview of previous results of its application in significant studies and present knowledge. Results from previous as well as some of the most recent studies indicate potential applications of controlled periodic illumination in areas other than just the improvement of the efficiency of the photocatalytic process.
Resumo:
Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.
Resumo:
In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.