232 resultados para SELECTIVE CHEMOSENSOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and photophysical evaluation of a new supramolecular lanthanide complex is described which was developed as a luminescent contrast agent for bone structure analysis. We show that the Eu(III) emission of this complex is not pH dependent within the physiological pH range, and that its steady state emission is not significantly modulated by a series of group I and II as well as d-metal ions, and that this agent can be successfully employed to image mechanically formed cracks (scratches) in bone samples after 4 or 24 hours, using confocal laser-scanning microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeasts and filamentous fungi are beginning to emerge as significant microbial pathogens in patients with cystic fibrosis (CF), particularly in relation to allergic-type responses, as seen in patients with allergic bronchopulmonary aspergillosis (ABPA), Aspergillus bronchitis and in invasive fungal disease in lung transplant patients. Four fungal media were compared in this study, including Sabouraud Dextrose Agar (SDA) and Medium B, with and without the addition of selective antibiotics, where antibiotic-supplemented media were designated with (+). These media were compared for their ability to suppress contaminating, mainly Gram-ve pathogens, in CF sputa (Pseudomonas aeruginosa, Burkholderia cepacia complex [BCC] organisms) and to enhance the growth of fungi present in CF sputum. Medium B consisted of glucose (16.7 g/l), agar (20 g/l), yeast extract (30 g/l) and peptone (6.8 g/l) at pH 6.3 and both SDA(+) and Medium B+ were supplemented with cotrimethoxazole, 128 mg/l; chloramphenicol, 50 mg/l; ceftazidime, 32 mg/l; colistin, 24 mg/l). Employment of SDA(+) or Medium B+ allowed an increase in specificity in the detection of yeasts and moulds, by 42.8% and 39.3%, respectively, over SDA when used solely. SDA(+) had a greater ability than Medium B+ to suppress bacterial growth from predominantly Gram-ve co-colonisers. This is a significant benefit when attempting to detect and isolate fungi from the sputum of CF patients, as it largely suppressed any bacterial growth, with the exception of the BCC organisms, thus allowing for an increased opportunity to detect target fungal organisms in sputum and represented a significant improvement over the commercial medium (SDA), which is currently used. Overall, both novel selective media were superior in their ability to suppress bacteria in comparison with the commercially available SDA medium, which is routinely employed in most clinical microbiology diagnostic laboratories presently. Alternatively, Medium B+ had a great ability to grow fungi than SDA(+) and when employed together, the specificity of combined use was 82%, with a sensitivity for yeasts, filamentous fungi, and combined overall fungi of 96.0%, 92.3% and 96.0%, respectively. Overall, when employing one fungal selective medium for the routine detection of yeasts and filamentous fungi in the sputum of CF patients, we would recommend employment of Medium B+. However, we would recommend the combined employment of SDA(+) and Medium B+, in order to synergistically isolate and detect the greatest number of fungi present in CF sputa. (C) 2008 European Cystic Fibrosis Society. Published by Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design, fabrication, and characterization of single-screen perturbed frequency-selective surfaces (FSS) at infrared frequencies for single and multiband applications are reported. Single-band FSS based on parallel strips have been perturbed by decreasing the length of every second strip within the array in order to achieve dual band-stop responses. The same principle has been extended to design FSS exhibiting tri- and quadreflection bands. In addition, strip FSSs have been perturbed by replacing every second strip for a metallic ring, resulting in dual-band filters with different polarization responses of the bands. These designs have been fabricated on large thin polyimide membranes using sacrificial silicon wafers. An oxide interlayer between the sacrificial silicon wafer and the polyimide membrane is employed to stop the silicon etching and is wet etched subsequently by a solution of ammonium fluoride and acetic acid that does not attack either the polyimide membrane or the aluminium FSS elements. Fourier transform infrared spectroscopy measurements are presented to validate the predicted responses of the fabricated prototypes.