137 resultados para Running Efficiency
Resumo:
Key stakeholders in the UK charity sector have, in recent years, advocated greater accountability for charity performance. Part of that debate has focussed on the use of conversion ratios as indicators of efficiency, with importance to stakeholders being contrasted with charities’ apparent reluctance to report such measures. Whilst, before 2005, conversion ratios could have been computed from financial statements, changes in the UK charity SORP have radically altered the ability of users to do this. This article explores the impact on the visibility of such information through an analysis of the financial statements of large UK charities before and after the 2005 changes. Overall, the findings suggest that, despite the stated intention of increasing transparency in respect of charity costs, the application of the changes has resulted in charities ‘managing’ the numbers and limiting their disclosures, possibly to the detriment of external stakeholders.
Resumo:
Stable networks of order r where r is a natural number refer to those networks that are immune to coalitional deviation of size r or less. In this paper, we introduce stability of a finite order and examine its relation with efficient networks under anonymous and component additive value functions and the component-wise egalitarian allocation rule. In particular, we examine shapes of networks or network architectures that would resolve the conflict between stability and efficiency in the sense that if stable networks assume those shapes they would be efficient and if efficient networks assume those shapes, they would be stable with minimal further restrictions on value functions.
Resumo:
The first generation of femtocells is evolving to the next generation with many more capabilities in terms of better utilisation of radio resources and support of high data rates. It is thus logical to conjecture that with these abilities and their inherent suitability for home environment, they stand out as an ideal enabler for delivery of high efficiency multimedia services. This paper presents a comprehensive vision towards this objective and extends the concept of femtocells from indoor to outdoor environments, and strongly couples femtocells to emergency and safety services. It also presents and identifies relevant issues and challenges that have to be overcome in realization of this vision.
Resumo:
Hydro-entanglement is a versatile process for bonding non-woven fabrics by the use of fine, closely-spaced, high-velocity jets of water to rearrange and entangle arrays of fibres. The cost of the process mainly depends on the amount of energy consumed. Therefore, the economy of the process is highly affected by optimisation of the energy required. In this paper a parameter called critical pressure is introduced which is indicative of the energy level requirement. The results of extensive experimental work are reported and analysed to give a clear understanding of the effect of the web and fibre properties on the critical pressure in the hydro-entanglement process. Furthermore, different energy-transfer distribution schemes are tested on various fabrics. The optimum scheme which involves the lowest energy consumption and the best fabric properties is identified. © 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.