166 resultados para Respiratory
Resumo:
Heart activity of Pecten maximus (L.) has been recorded during various forms of experimentally induced respiratory stress. There was considerable variation in the responses of individual scallops but bradycardia generally occurred in response to all forms of respiratory stress, with the rate of fall in heart rate dependent upon the severity of hypoxia. When oxygen tension declined slowly in a closed respirometer there was regulation of both heart rate and oxygen consumption. The critical tension, Pc, for oxygen consumption lay between 70 and 80 mm Hg, and corresponded with a slight regulatory upswing of the heart rate, whereas the Pc for heart rate was much lower at 20–30 mm Hg. Sudden transfer to deoxygenated water for 3 h resulted in very rapid bradycardia and there was a rapid recovery and initial overshoot of the normal rate on return to well-oxygenated sea water. Aerial exposure for 3 h produced more gradual bradycardia followed by gradual recovery on return to sea water. The results of this work are compared in some detail with previous work on other species of bivalve from different geographical areas and habitats, and the mechanisms controlling cardiac and respiratory regulation are discussed. It is concluded that there are few clear-cut general differences between littoral and sublittoral species in their behavioural and physiological adaptations to hypoxia; the main distinguishing feature of littoral-adapted species is their ability to control air-gaping. Changes in heart activity generally indicate variations in metabolic rate, the speed at which the metabolic rate may be altered reflecting the degree of adaptation to the littoral environment.
Resumo:
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Resumo:
BACKGROUND:
In a previous randomised controlled phase 2 trial, intravenous infusion of salbutamol for up to 7 days in patients with acute respiratory distress syndrome (ARDS) reduced extravascular lung water and plateau airway pressure. We assessed the effects of this intervention on mortality in patients with ARDS.
METHODS:
We did a multicentre, placebo-controlled, parallel-group, randomised trial at 46 UK intensive-care units between December, 2006, and March, 2010. Intubated and mechanically ventilated patients (aged =16 years) within 72 h of ARDS onset were randomly assigned to receive either salbutamol (15 µg/kg ideal bodyweight per h) or placebo for up to 7 days. Randomisation was done by a central telephone or web-based randomisation service with minmisation by centre, pressure of arterial oxygen to fractional inspired oxygen concentration (PaO(2)/F(I)O(2)) ratio, and age. All participants, caregivers, and investigators were masked to group allocation. The primary outcome was death within 28 days of randomisation. Analysis was by intention-to-treat. This trial is registered, ISRCTN38366450 and EudraCT number 2006-002647-86.
FINDINGS:
We randomly assigned 162 patients to the salbutamol group and 164 to the placebo group. One patient in each group withdrew consent. Recruitment was stopped after the second interim analysis because of safety concerns. Salbutamol increased 28-day mortality (55 [34%] of 161 patients died in the salbutamol group vs 38 (23%) of 163 in the placebo group; risk ratio [RR] 1·47, 95% CI 1·03-2·08).
INTERPRETATION:
Treatment with intravenous salbutamol early in the course of ARDS was poorly tolerated. Treatment is unlikely to be beneficial, and could worsen outcomes. Routine use of ß-2 agonist treatment in ventilated patients with this disorder cannot be recommended.
Sequential antimicrobial therapy: treatment of severe lower respiratory tract infections in children
Resumo:
Although there have been a number of studies in adults, to date there has been little research into sequential antimicrobial therapy (SAT) in paediatric populations. The present study evaluates the impact of a SAT protocol for the treatment of severe lower respiratory tract infection in paediatric patients. The study involved 89 paediatric patients (44 control and 45 SAT). The SAT patients had a shorter length of hospital stay (4.0 versus 8.3 days), shorter duration of inpatient antimicrobial therapy (4.0 versus 7.9 days) with the period of iv therapy being reduced from a mean of 5.6 to 1.7 days. The total healthcare costs were reduced by 52%. The resolution of severe lower respiratory tract infection with a short course of iv antimicrobials, followed by conversion to oral therapy yielded clinical outcomes comparable to those achieved using longer term iv therapy. SAT proved to be an important cost-minimizing tool for realizing substantial healthcare costs savings.
Resumo:
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.
Resumo:
The in vitro activity of moxifloxacin and comparator agents against respiratory isolates from a range of geographically distinct centres around the United Kingdom was investigated in the following study. Clinical isolates of Streptococcus pneumoniae (n = 257), Haemophilus influenzae (n = 399) and Moraxella catarrhalis (n = 253) were obtained between March 1998 and April 1999 from nine centres in the United Kingdom. Sensitivity was determined by testing each isolate for its minimum inhibitory concentration (MIC) by agar dilution. Against Streptococcus pneumoniae moxifloxacin and grepafloxacin were the most active (MIC90 = 0.25 mg/l). Trovafloxacin and sparfloxacin were the next most active (MIC90 = 0.5 mg/l) followed by levofloxacin and ciprofloxacin. MIC90 values of the six fluoroquinolones versus H. influenzae ranged from ciprofloxacin > levofloxacin. Against M. catarrhalis the lowest MIC90 was that of grepafloxacin at 0.0625 mg/l followed by moxifloxacin, sparfloxacin, levofloxacin and ciprofloxacin. Trovafloxacin demonstrated the highest MIC90 at 0.5 mg/l. These results demonstrate that moxifloxacin has superior in vitro activity against respiratory tract pathogens than any other comparator quinolones available for clinical use.