215 resultados para Resonant excitation
Resumo:
The nonlinear nature of the rf absorption in a helicon-produced plasma was recently evidenced by the observation that the helicon wave damping as well as the level of short-scale electrostatic fluctuations excited in the helicon plasma increases with rf power. Correlation methods using electrostatic probes as well as microwave back-scattering at the upper-hybrid resonance allow identifying the fluctuations as ion-sound and Trivelpiece– Gould waves satisfying the frequency and wavenumber matching conditions for the parametric decay instability of the helicon pump wave. Furthermore, the growth rates and thresholds deduced from their temporal growth are in good agreement with theoretical predictions for the parametric decay instability that takes into account realistic damping rates for the decay waves as well as a non-vanishing parallel wavenumber of the helicon pump. The close relationship between the rf absorption and the excitation of the fluctuations was investigated in more detail by performing time- and space-resolved measurements of the helicon wave field and the electrostatic fluctuations.
Resumo:
Subwavelength resonators at FIR are presented and studied. The structures consist of 1D cavities formed between a metallized (silver) surface and a metamaterial surface comprising a periodic array of silver patches on a silver-backed silicon substrate. The concept derives from recent discoveries of artificial magnetic conductors (AMC). By studying the currents excited on the metamaterial surface by a normally incident plane wave, the nature of the emerging resonant phenomena and the physical mechanism underlying the AMC operation are investigated. Full wave simulations, based on finite element method and time-domain transmission line modelling technique, have been carried out to demonstrate the effective AMC boundary condition and prove the possibilities for subwavelength cavities. The quality factor of the resonant cavities is assessed as a function of the cavity profile. It is demonstrated that the quality factor drops to about 1/8 of the half-wavelength value for lambda/8 resonant cavity.
Resumo:
An efficient analysis and design of an electromagnetic-bandgap (EBG) waveguide with resonant loads is presented. Equivalent-circuit analysis is employed to demonstrate the differences between EBG waveguides with resonant and nonresonant loadings. As a result of the resonance, transmission zeros at finite frequencies emerge. The concept is demonstrated in E-plane waveguides. A generic fast and efficient formulation is presented, which starts from the generalized scattering matrix of the unit cell and derives the dispersion properties of the infinite structure. Both real and imaginary parts of the propagation constant are derived and discussed. The Floquet wavelength and impedance are also presented. The theoretical results are validated by comparison with simulations of a finite structure and experimental results. The application of the proposed EBG waveguide in the suppression of the spurious passband of a conventional E-plane filter is presented by experiment.
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the quantum statistics during transfer with and without losses in the metal.
Resumo:
Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the View the MathML source, and 2p23ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R -matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range View the MathML source, obtained from the nonresonant collision strengths from the Flexible Atomic Code.
Resumo:
Effective collision strengths for forbidden transitions among the five energetically lowest fine-structure levels of O ii are calculated in the Breit-Pauli approximation using the R-matrix method. Results are presented for the electron temperature range 100-100 000 K. The accuracy of the calculations is evaluated via the use of different types of radial orbital sets and a different configuration expansion basis for the target wavefunctions. A detailed assessment of previous available data is given, and erroneous results are highlighted. Our results reconfirm the validity of the original Seaton and Osterbrock scaling for the optical O ii ratio, a matter of some recent controversy. Finally, we present plasma diagnostic diagrams using the best collision strengths and transition probabilities.
Resumo:
Aims.
In this paper we report calculations for energy levels, radiative rates, and electron impact excitation rates for transitions in O vii.
Methods.
The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative
rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) and the
flexible atomic code (fac) are used.
Results.
Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest
49 levels of O vii. Collision strengths have been averaged over a Maxwellian velocity distribution, and the resulting effective collision
strengths are reported over a wide temperature range below 2 × 106 K. Additionally, lifetimes are also listed for all levels.
Key words.
Resumo:
Aims. In this paper we report on calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 25 levels of the n $\le$ 5 configurations of H-like Fe XXVI.
Methods. The general-purpose relativistic atomic structure package (GRASP) and Dirac atomic R-matrix code (DARC) are adopted for the calculations.
Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among the 25 levels. Furthermore, collision strengths and effective collision strengths are reported for all the 300 transitions among the above 25 levels over a wide energy (temperature) range up to 1500 Ryd (107.7 K). Comparisons are made with earlier available results and the accuracy of the data is assessed.
Resumo:
Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.