105 resultados para Resistant Staphylococcus-aureus
Resumo:
Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.
Resumo:
The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.
Resumo:
This study aimed to determine the effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy (PACT) on the susceptibility of clinical Staphylococcus aureus and Pseudomonas aeruginosa isolates to both PACT and a range of antibiotics used in the treatment of infection caused by these bacteria. Clinical S. aureus and P. aeruginosa isolates were exposed to sub-lethal PACT with meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) and methylene blue (MB) over a 72 h period. After exposure, susceptibility of surviving organisms to a range of antibiotics was determined and compared with the susceptibility of an untreated control. Surviving bacteria were also exposed to previously lethal photosensitizer-light combinations, to determine if susceptibility to PACT was affected by sub-lethal exposure. Exposure to sub-lethal PACT did not decrease susceptibility to antibiotics with the minimum inhibitory concentrations for 95% and 100% of P. aeruginosa and S. aureus isolates, respectively, within two doubling dilutions of the MIC of the untreated control. Similarly, habituation with sub-lethal PACT did not reduce susceptibility of P. aeruginosa isolates to PACT levels previously determined as lethal. A reduction in susceptibility to PACT following habituation was apparent for two S. aureus isolates with MB and for 1 S. aureus isolate with IMP. However, for two of these three isolates, the log reduction for habituated cells was still greater than 4 log(10). PACT remains an attractive potential treatment for infection caused by these bacteria. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
From defensive skin secretions acquired from two species of African hyperoliid frogs, Kassina maculata and Kassina senegalensis, we have isolated two structurally related, C-terminally amidated tridecapeptides of novel primary structure that exhibit a broad spectrum of biological activity. In reflection of their structural novelty and species of origin, we named the peptides kassorin M (FLEGLLNTVTGLLamide; 1387.8 Da) and kassorin S (FLGGILNTITGLLamide; 1329.8 Da), respectively. The primary structure and organisation of the biosynthetic precursors of kassorins M and S were deduced from cloned skin secretion-derived cDNA. Both open-reading frames encoded a single copy of kassorin M and S, respectively, located at the C-terminus. Kassorins display limited structural similarities to vespid chemotactic peptides (7/13 residues), temporin A (5/13 residues), the N-terminus of Lv-ranaspumin, a foam nest surfactant protein of the frog, Leptodactylus vastus, and an N-terminal domain of the equine sweat surfactant protein, latherin. Both peptides elicit histamine release from rat peritoneal mast cells. However, while kassorin S was found to possess antibacterial activity against Staphylococcus aureus, kassorin M was devoid of such activity. In contrast, kassorin M was found to contract the smooth muscle of guinea pig urinary bladder (EC50 = 4.66 nM) and kassorin S was devoid of this activity. Kassorins thus represent the prototypes of a novel family of peptides from the amphibian innate immune system as occurring in defensive skin secretions.
Resumo:
The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.
Resumo:
The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu?Pro at position 2 and Phe?Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20µM and 150µM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His?Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5µM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His?Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40µm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.
Resumo:
Amphibian skin is a rich and unique source of novel bioactive peptides most of which are endowed with either antimicrobial or pharmacological properties. Here we report the identification and structural characterization of a novel peptide, named senegalin, which possesses both activities. Senegalin is a hexadecapeptide amide (FLPFLIPALTSLISSL-NH2) of unique primary structure found in the skin secretion of the African running frog, Kassina senegalensis. The structure of the biosynthetic precursor of senegalin, deduced from cloned skin cDNA, consists of 76 amino acid residues and displays the typical domain organization of an amphibian skin peptide precursor. Both natural senegalin and its synthetic replicate
displayed antimicrobial and myotropic activities. Senegalin was active against Staphylococcus aureus (MIC 50µM) and Candida albicans (MIC 150µM) but was nonhaemolytic at concentrations up to and including 150µM. In contrast, senegalin induced a dose-dependent contraction of rat urinary bladder smooth muscle (EC50 2.9nM) and a dosedependent relaxation of rat tail artery smooth muscle (EC50 37.7nM). Senegalin thus represents a prototype biologically-active amphibian skin peptide and illustrates the fact thatamphibian skin secretion peptidomes continue to be unique sources of such molecules.
Resumo:
The IQ-motif is an amphipathic, often positively charged, a-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic a-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.
Resumo:
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.
Resumo:
The multitude of biomolecular and regulatory factors involved in staphylococcal adhesion and biofilm formation owe much to their ability to colonize surfaces, allowing the biofilm form to become the preferential bacterial phenotype. Judging by total number, biomass and variety of environments colonized, bacteria can be categorized as the most successful lifeform on earth. This is due to the ability of bacteria and other microorganisms to respond phenotypically via biomolecular processes to the stresses of their surrounding environment. This review focuses on the specific pathways involved in the adhesion of the Gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus with reference to the role of specific cell surface adhesins, the ica operon, accumulation-associated proteins and quorum-sensing systems and their significance in medical device-related infection.
Resumo:
Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160µM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5µM) and the yeast, Candida albicans (10µM). Haemolytic activity of TsAP-1 was low (4% at 160µM) and in contrast, that of TsAP-2 was considerably higher (18% at 20µM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5µM for S.aureus/C.albicans and 5µM for E.coli but with an associated large increase in haemolytic activity (30% at 5µM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E.coli lowering this from >320µM to 5µM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 µM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity.
Resumo:
Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 µM against Gram-negative Escherichia coli, 4.3 µM against Gram-positive Staphylococcus aureus and 4–9 µM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.
Resumo:
Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure—GMRPPWF-NH2—was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μM). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.
Resumo:
The first amphibian skin antimicrobial peptide (AMP) to be identified was named bombinin, reflecting its origin from the skin of the European yellow-bellied toad (Bombina variegata). Bombinins and their related peptides, the bombinin Hs, were subsequently reported from other bombinid toads. Molecular cloning of bombinin-encoding cDNAs from skin found that bombinins and bombinin Hs were coencoded on the same precursor proteins. Here, we report the molecular cloning of two novel cDNAs from a skin secretion-derived cDNA library of B. variegata whose open-reading frames each encode a novel bombinin (GIGGALLNVGKVALKGLAKGLAEHFANamide) and a C-terminally located single copy of a novel nonapeptide (FLGLLGGLLamide or FLGLIGSLLamide). These novel nonapeptides were named feleucin-BV1 and feleucin-BV2, respectively. The novel bombinin exhibited 89% identity to homologues from the toads, B. microdeladigitora and B. maxima. The feleucins exhibited no identity with any amphibian AMP archived in databases. Synthetic feleucins exhibited a weak activity against Staphylococcus aureus (128–256 mg/L) but feleucin-BV1 exhibited a synergistic action with the novel bombinin. The present report clearly demonstrates that the skin secretions of bombinid toads continue to represent a source of peptides of novel structure that could provide templates for the design of therapeutics.
Resumo:
The skin secretions of Neotropical phyllomedusine leaf frogs have proven to be a rich source of biologically-active peptides, including antimicrobials. The major families of antimicrobial peptides (AMPs) reported are the dermaseptins and phylloseptins and the minor families, the dermatoxins, phylloxins, plasticins, distinctins and the medusins. Here, we report a novel AMP of 10 amino acid residues (LRPAILVRIKamide), named balteatide, from the skin secretion of wild Peruvian purple-sided leaf frogs, Phyllomedusa baltea. Balteatide was found to exhibit a 90% sequence identity with sauvatide, a potent myotropic peptide from the skin secretion of Phyllomedusa sauvagei. However, despite both peptides exhibiting only a single amino acid difference (I/T at position 9), sauvatide is devoid of antimicrobial activity and balteatide is devoid of myotropic activity. Balteatide was found to have differential activity against the Gram-positive bacterium, Staphylococcus aureus, the Gram-negative bacterium, Escherichia coli and the yeast, Candida albicans, and unusually for phyllomedusine frog skin AMPs, was most potent (MIC 32 mg/L) against the yeast. Balteatide was also devoid of haemolytic activity up to concentrations of 512 mg/L. Phyllomedusine frog skin secretions thus continue to provide novel AMPs, some of which may provide templates for the rational design of new classes of anti-infective therapeutics.