158 resultados para Receptors, Androgen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacological classification of P2 receptors owes its origin to the pioneering efforts of Geoff Burnstock and those who followed him, research that was conducted primarily in physiological experimental systems. Over recent years, the techniques of molecular biology have been increasingly applied in the study of P2 receptors while, at the same time, advances in their pharmacological analysis have been limited by a lack of potent and selective agonist or antagonist ligands. This has resulted in a classification scheme which is largely structural in nature, with relatively little contribution from pharmacology. Our endeavours in this area have been directed towards the discovery of ligands with which the pharmacological analysis and definition of P2 receptors could be advanced, the ultimate goal being the design of therapeutic agents. This article will describe some of our experiences in this challenging but rewarding Nea. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 In the present study we have investigated the roles of P2Y(1) and P-2T receptor subtypes in adenosine 5'-diphosphate (ADP)-induced aggregation of human platelets in heparinized platelet rich plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver salts and triphosphine ligands with biphenyl substituents assemble to give coordination cages with four external aromatic channel receptors in a pseudo-tetrahedral arrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.

Results

Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.

Conclusions

Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: As trials of 5 years of tamoxifen in early breast cancer mature, the relevance of hormone receptor measurements (and other patient characteristics) to long-term outcome can be assessed increasingly reliably. We report updated meta-analyses of the trials of 5 years of adjuvant tamoxifen.
Methods: We undertook a collaborative meta-analysis of individual patient data from 20 trials (n=21457) in early breast cancer of about 5 years of tamoxifen versus no adjuvant tamoxifen, with about 80% compliance. Recurrence and death rate ratios (RRs) were from log-rank analyses by allocated treatment.
Findings: In oestrogen receptor (ER)-positive disease (n=10 645), allocation to about 5 years of tamoxifen substantially reduced recurrence rates throughout the first 10 years (RR 0.53 [SE 0.03] during years 0-4 and RR 0.68 [0.06] during years 5-9 [both 2p<0.00001]; but RR 0.97 [0.10] during years 10-14, suggesting no further gain or loss after year 10). Even in marginally ER-positive disease (10-19 fmol/mg cytosol protein) the recurrence reduction was substantial (RR 0.67 [0.08]). In ER-positive disease, the RR was approximately independent of progesterone receptor status (or level), age, nodal status, or use of chemotherapy. Breast cancer mortality was reduced by about a third throughout the first 15 years (RR 0.71 [0.05] during years 0-4, 0.66 [0.05] during years 5-9, and 0.68 [0.08] during years 10-14; p<0.0001 for extra mortality reduction during each separate time period). Overall non-breast-cancer mortality was little affected, despite small absolute increases in thromboembolic and uterine cancer mortality (both only in women older than 55 years), so all-cause mortality was substantially reduced. In ER-negative disease, tamoxifen had little or no effect on breast cancer recurrence or mortality.
Interpretation: 5 years of adjuvant tamoxifen safely reduces 15-year risks of breast cancer recurrence and death. ER status was the only recorded factor importantly predictive of the proportional reductions. Hence, the absolute risk reductions produced by tamoxifen depend on the absolute breast cancer risks (after any chemotherapy) without tamoxifen.
Funding: Cancer Research UK, British Heart Foundation, and Medical Research Council.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To characterize the importance of cellular Fas-associated death domain (FADD)–like interleukin 1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)–promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)–targeted therapy.

Experimental Design: c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions.

Results: c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7–mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance.

Conclusion: c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC. Clin Cancer Res; 18(14); 3822–33.