79 resultados para Progression tumorale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BackgroundThe recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear.Design and MethodsThe expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays.ResultsWe found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples.ConclusionsIn conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Low HDL cholesterol (HDL-C) and small HDL particle size may directly promote hyperglycemia. We evaluated associations of HDL-C, apolipoprotein A-I (apoA-I), and HDL-C/apoA-I with insulin secretion, insulin resistance, HbA1c, and long-term glycemic deterioration, reflected by initiation of pharmacologic glucose control.

RESEARCH DESIGN AND METHODS: The 5-year Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study followed 9,795 type 2 diabetic subjects. We calculated baseline associations of fasting HDL-C, apoA-I, and HDL-C/apoA-I with HbA1c and, in those not taking exogenous insulin (n = 8,271), with estimated β-cell function (homeostasis model assessment of β-cell function [HOMA-B]) and insulin resistance (HOMA-IR). Among the 2,608 subjects prescribed lifestyle only, Cox proportional hazards analysis evaluated associations of HDL-C, apoA-I, and HDL-C/apoA-I with subsequent initiation of oral hypoglycemic agents (OHAs) or insulin.

RESULTS: Adjusted for age and sex, baseline HDL-C, apoA-I, and HDL-C/apoA-I were inversely associated with HOMA-IR (r = -0.233, -0.134, and -0.230; all P < 0.001; n = 8,271) but not related to HbA1c (all P > 0.05; n = 9,795). ApoA-I was also inversely associated with HOMA-B (r = -0.063; P = 0.002; n = 8,271) adjusted for age, sex, and HOMA-IR. Prospectively, lower baseline HDL-C and HDL-C/apoA-I levels predicted greater uptake (per 1-SD lower: hazard ratio [HR] 1.13 [CI 1.07-1.19], P < 0.001; and HR 1.16 [CI 1.10-1.23], P < 0.001, respectively) and earlier uptake (median 12.9 and 24.0 months, respectively, for quartile 1 vs. quartile 4; both P < 0.01) of OHAs and insulin, with no difference in HbA1c thresholds for initiation (P = 0.87 and P = 0.81). Controlling for HOMA-IR and triglycerides lessened both associations, but HDL-C/apoA-I remained significant.

CONCLUSIONS: HDL-C, apoA-I, and HDL-C/apoA-I were associated with concurrent insulin resistance but not HbA1c. However, lower HDL-C and HDL-C/apoA-I predicted greater and earlier need for pharmacologic glucose control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving 'molecular toolbox' for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the "neoblast" stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.