80 resultados para Process Analytical Technology (PAT)
Resumo:
Cold plasma is an emerging non-thermal processing technology that could be used for large scale leaf decontamination as an alternative to chlorine washing. In this study the effect of an atmospheric cold plasma apparatus (air DBD, 15 kV) on the safety, antioxidant activity and quality of radicchio (red chicory, Cichorium intybus L.) was investigated after 15 and 30 min of treatment (in afterglow at 70 mm from the discharge, at 22 °C and 60% of RH) and during storage. Escherichia coli O157:H7 inoculated on radicchio leaves was significantly reduced after 15 min cold plasma treatment (-1.35 log MPN/cm<sup>2</sup>). However, a 30 min plasma treatment was necessary to achieve a significant reduction of Listeria monocytogenes counts (-2.2 log CFU/cm<sup>2</sup>). Immediately after cold plasma treatment, no significant effects emerged in terms of antioxidant activity assessed by the ABTS and ORAC assay and external appearance of the radicchio leaves. Significant changes between treated and untreated radicchio leaves are quality defects based on the cold plasma treatment. Atmospheric cold plasma appears to be a promising processing technology for the decontamination of leafy vegetables although some criticalities, that emerged during storage, need to be considered in future studies.
Resumo:
Mobile App technology in social work education remains in the embryonic stages of development with a few notable exceptions. The use of Apps in College and University settings has been reported in other sectors of higher education, although there is a paucity of research in relation to its relevance to social work education and practice. The following article describes the creation of four social work education and practice Apps by a team of social work educators. The primary focus is on the design process and the partnership approach to the creation of the tools. It also outlines the rationale for the App development, the working process and the theoretical framework underpinning mobile learning. Furthermore, it provides information on the level of usage of the Apps according to geographical location, download information and time spent on each section of the App. The article also incorporates a pragmatic summary of developmental guidelines which may aid social work educators in the development and implementation of specialist information-based Apps for education and practice.
Resumo:
The accurate determination of non-linear shear behaviour and fracture toughness of continuous carbon-fibre/polymer composites remains a considerable challenge. These measurements are often necessary to generate material parameters for advanced computational damage models. In particular, there is a dearth of detailed shear fracture toughness characterisation for thermoplastic composites which are increasingly generating renewed interest within the aerospace and automotive sectors. In this work, carbon fibre (AS4)/ thermoplastic Polyetherketoneketone (PEKK) composite V-notched cross-ply specimens were manufactured to investigate their non-linear response under pure shear loading. Both monotonic and cyclic loading were applied to study the shear modulus degradation and progressive failure. For the first time in the reported literature, we use the essential work of fracture approach to measure the shear fracture toughness of continuous fibre reinforced composite laminates. Excellent geometric similarity in the load-displacement curves was observed for ligament-scaled specimens. The laminate fracture toughness was determined by linear regression, of the specific work of fracture values, to zero ligament thickness, and verified with computational models. The matrix intralaminar fracture toughness (ply level fracture toughness), associated with shear loading was determined by the area method. This paper also details the numerical implementation of a new three-dimensional phenomenological model for carbon fibre thermoplastic composites using the measured values, which is able to accurately represent the full non-linear mechanical response and fracture process. The constitutive model includes a new non-linear shear profile, shear modulus degradation and load reversal. It is combined with a smeared crack model for representing ply-level damage initiation and propagation. The model is shown to accurately predict the constitutive response in terms of permanent plastic strain, degraded modulus as well as load reversal. Predictions are also shown to compare favourably with the evolution of damage leading to final fracture.
Resumo:
The notion of educating the public through generic healthy eating messages has pervaded dietary health promotion efforts over the years and continues to do so through various media, despite little evidence for any enduring impact upon eating behaviour. There is growing evidence, however, that tailored interventions such as those that could be delivered online can be effective in bringing about healthy dietary behaviour change. The present paper brings together evidence from qualitative and quantitative studies that have considered the public perspective of genomics, nutrigenomics and personalised nutrition, including those conducted as part of the EU-funded Food4Me project. Such studies have consistently indicated that although the public hold positive views about nutrigenomics and personalised nutrition, they have reservations about the service providers' ability to ensure the secure handling of health data. Technological innovation has driven the concept of personalised nutrition forward and now a further technological leap is required to ensure the privacy of online service delivery systems and to protect data gathered in the process of designing personalised nutrition therapies.