261 resultados para Plastics Biodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work in this paper is of particular significance since it considers the problem of modelling cross- and auto-correlation in statistical process monitoring. The presence of both types of correlation can lead to fault insensitivity or false alarms, although in published literature to date, only autocorrelation has been broadly considered. The proposed method, which uses a Kalman innovation model, effectively removes both correlations. The paper (and Part 2 [2]) has emerged from work supported by EPSRC grant GR/S84354/01 and is of direct relevance to problems in several application areas including chemical, electrical, and mechanical process monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper builds on work presented in the first paper, Part 1 [1] and is of equal significance. The paper proposes a novel compensation method to preserve the integrity of step-fault signatures prevalent in various processes that can be masked during the removal of both auto- and cross correlation. Using industrial data, the paper demonstrates the benefit of the proposed method, which is applicable to chemical, electrical, and mechanical process monitoring. This paper, (and Part 1 [1]), has led to further work supported by EPSRC grant GR/S84354/01 involving kernel PCA methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper describes the results of an investigation into the modelling of plug assisted thermoforming. The objective of this work was to improve the finite element modelling of thermoforming through an enhanced understanding of the physical elements underlying the process. Experiments were carried out to measure the effects on output of changes in major parameters and simultaneously simple finite element models were constructed. The experimental results show that the process creates conflicting and interrelated contact friction and heat transfer effects that largely dictate the final wall thickness distribution. From the simulation work it was demonstrated that a high coefficient of friction and no heat transfer can give a good approximation of the actual wall thickness distribution. However, when conduction was added to the model the results for lower friction values were greatly improved. It was concluded that further work is necessary to provide realistic measurements and models for contact effects in thermoforming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of false coincidences from measurements of coincidences between two photoelectrons and one or two ions formed in molecular double photoionization is described. False coincidences arise by several mechanisms; experimental procedures and mathematical formulae required to remove all the different false coincidence contributions are described. Sample spectra taken of the double photoionization of carbon dioxide are presented to illustrate the method of false coincidence subtraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the electrical transport properties of mats of single-walled carbon nanotubes (SWNT) as a function of applied electric and magnetic fields. We find that at low temperatures the resistance as a function of temperature R(T) follows the Mott variable range hopping (VRH) formula for hopping in three dimensions. Measurement of the electric field dependence of the resistance R(E) allows for the determination of the Bohr radius of a localized state a = 700nm. The magnetoresistance (MR) of SWNT mat samples is large and negative at all temperatures and fields studied. The low field negative MR is proportional to H2, in agreement with variable range hopping in two or three dimensions. 3D VRH indicates good intertube contacts, implying that the localization is due to the disorder experienced by the individual tubes. The 3D localization radius gives a measure of the ID localization length on the individual tubes, which we estimate to be >700 nm. Implications for the electron-phonon mean free path are discussed.

Relevância:

10.00% 10.00%

Publicador: