112 resultados para Picture-word Interference
Resumo:
Cognitive assessment typically involves assessing a person’s cognitive performance in unfamiliar and ar-guably unnatural clinical surroundings. User-centred approaches to assessment and monitoring, driven by issues such as enjoyability and familiarity, are largely absent. Everyday technologies, for example, smartphones represent an opportunity to obtain an objective assessment of a person’s cognitive capabili-ties in a non-threatening, discreet and familiar way, e.g. by everyday puzzle games undertaken as a leisure activity at home. We examined the strength of relationships that exist between performance on common puzzle games and standard measures of neuropsychological performance. Twenty-nine participants, aged 50 - 65 years, completed a comprehensive neuropsychological test battery and played three smart-phone-based puzzle games in triplicate: a picture puzzle [Matches Plus], a word puzzle [Jumbline] and a number puzzle [Sudoku]. As anticipated, a priori, significant correlations were observed between scores on a picture puzzle and visual memory test (r = 0.49; p = 0.007); a word puzzle and estimated verbal IQ (r = 0.53; p = 0.003) and verbal learning (r = 0.30; p = 0.039) tests; and a number puzzle and reason-ing/problem solving test (r = 0.42; p = 0.023). Further analyses making allowance for multiple compari-sons identified a significant unanticipated correlation (r = 0.49; p = 0.007) between number puzzle scores and a measure of nonverbal working memory. Performance on these smartphone-based games was in-dicative of relative cognitive ability across several cognitive domains at a fixed time point. Smart-phone-based, everyday puzzle games may offer a valid, portable measure of assessing and monitoring cognition in older adults.
Resumo:
Femtocells being small low powered base stations provide sufficient increase in system capacity along with better indoor coverage. However, the dense deployment of femtocells face the main challenge of co channel interference with macrocell users. In this paper, this interference problem is addressed by proposing a novel downlink power control algorithm for femtocells. The proposed algorithm gradually reduces the downlink transmit power of femtocells when they are informed about a nearby macrocell user under interference. This information is given to the femtocells by the macrocell base station through a unidirectional downlink broadcast channel. Simulation results show that the algorithm causes the macrocell to accommodate large number of femtocells within its area, whereas at the same time protecting the macrocell users from any harmful interference.
Resumo:
We examine the impact of primary and secondary interference on opportunistic relaying in cognitive spectrum sharing networks. In particular, new closed-form exact and asymptotic expressions for the outage probability of cognitive opportunistic relaying are derived over Rayleigh and Nakagami-m fading channels. Our analysis presents revealing insights into the diversity and array gains, diversity-multiplexing tradeoff, impact of primary transceivers' positions, and the optimal position of relays. We highlight that cognitive opportunistic relaying achieves the full diversity gain which is a product of the number of relays and the minimum Nakagami-m fading parameter in the secondary network. Furthermore, we confirm that the diversity gain reduces to zero when the peak interference constraint in the secondary network is proportional to the interference power from the primary network.
Resumo:
We propose transmit antenna selection (TAS) in decode-and-forward (DF) relaying as an effective approach to reduce the interference in underlay spectrum sharing networks with multiple primary users (PUs) and multiple antennas at the secondary users (SUs). We compare two distinct protocols: 1) TAS with receiver maximal-ratio combining (TAS/MRC) and 2) TAS with receiver selection combining (TAS/SC). For each protocol, we derive new closed-form expressions for the exact and asymptotic outage probability with independent Nakagami-m fading in the primary and secondary networks. Our results are valid for two scenarios related to the maximum SU transmit power, i.e., P, and the peak PU interference temperature, i.e., Q. When P is proportional to Q, our results confirm that TAS/MRC and TAS/SC relaying achieve the same full diversity gain. As such, the signal-to-noise ratio (SNR) advantage of TAS/MRC relaying relative to TAS/SC relaying is characterized as a simple ratio of their respective SNR gains. When P is independent of Q, we find that an outage floor is obtained in the large P regime where the SU transmit power is constrained by a fixed value of Q. This outage floor is accurately characterized by our exact and asymptotic results.
Resumo:
A 25 year old man was brought into the emergency
department by ambulance. He was involved in a road
traffic incident and had an obvious site of blood loss from
a fracture of an upper limb. On his arrival at the
emergency department, you are told that the ambulance
paramedic was unable to gain intravenous access and
are asked by the person in charge of resuscitation to try
to gain access. You are unable to find any peripheral
veins because he is hypovolemic. You attempt to put in a
central line via the femoral vein (fig 1).
Resumo:
We apply the time-dependent R-matrix method to investigate harmonic generation from Ne+ at a wavelength of 390 nm and intensities up to 1015 W cm−2. The 1s22s22p4 (3Pe,1De, and 1Se) states of Ne2+ are included as residual-ion states to assess the influence of interference between photoionization channels associated with these thresholds. The harmonic spectrum is well approximated by calculations in which only the 3Pe and 1De thresholds are taken into account, but no satisfactory spectrum is obtained when a single threshold is taken into account. Within the harmonic plateau, extending to about 100 eV, individual harmonics can be suppressed at particular intensities when all Ne2+ thresholds are taken into account. The suppression is not observed when only a single threshold is accounted for. Since the suppression is dependent on intensity, it may be difficult to observe experimentally.
Resumo:
Cognitive radio (CR) with spectrum-sharing has been envisioned as emerging technology for the next generation of mobile and wireless networks by allowing the unlicensed customers simultaneously utilize the licensed radio frequency spectrums. However, the CR has faced some practical challenges due to its deduced system performance as compared to non spectrum-sharing counterpart. In this paper, we therefore consider the potential of incorporating the cooperative communications into CR by introducing the concept of reactive multiple decode-and-forward (DF) relays. In particular, we derive new results for exact and asymptotic expressions for the performance of cognitive relay networks with K-th best relay selection. Our novel results have exhibited the significance of using relay networks to enhance the system performance of CR.
Resumo:
Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.
Resumo:
Anatomy and physiology refers to the structure and function of the human body. Students studying this module, known as life science or bioscience, develop knowledge of the structure (anatomy) and function (physiology) of the body that can be applied in clinical practice and support other study courses.