98 resultados para Photo Sharing
Resumo:
Biofilm growth on stone surfaces is a significant contributing factor to stone biodeterioration. Current market based biocides are hazardous to the environment and to public health. We have investigated the photo-dynamic effect of methylene blue (MB) in the presence of hydrogen peroxide (H2O2) on the destruction of the cyanobacterium Synechococcus leopoliensis (S. leopoliensis) under irradiation with visible light. Data presented in this paper illustrate that illumination of S. leopoliensis in the presence of a photosensitiser (MB) and H2O2 results in the decomposition of both the cyanobacterium and the photosensitiser. The presence of MB and H2O2 affects the viability of the photosensitiser and the cyanobacterium with the fluorescence of both decreasing by 80% over the irradiation time investigated. The photo-dynamic effect was observed under aerobic and anaerobic conditions indicating that oxygen was not necessary for the process. This novel combination could be effective for the remediation of biofilm colonised stone surfaces
Resumo:
In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.
Resumo:
Since the 1960s, public consultation has emerged as an important democratic tool, allowing governments to inform, debate, and learn from the general public. Since the 1980s, international trade agreements have wielded significant influence over domestic law making, as an ever more ‘comprehensive’ set of topics are regulated via treaty. In Canada, these two trends have yet to meet. Neither public nor Parliament is involved in trade policy making raising concerns about the democratic legitimacy of expansive trade agreements. Through the lens of the recent Canada-EU CETA, this article examines whether trade law’s consultation practices can be aligned with those of other federal government departments. We identify five key values that make consultations successful—diversity, education, commitment, accountability, and transparency—and consider the viability of their inclusion in trade consultations.
Resumo:
In this paper, we propose cyclic prefix single carrier (CP-SC) full-duplex transmission in cooperative spectrum sharing to achieve multipath diversity gain and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the peak interference power constraint at the PUs are concurrently inflicted on the transmit power at the secondary source (SS) and the secondary relays (SRs); and 2) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays. Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively evaluate the exact and the asymptotic outage probability for several relay selection policies in frequency selective fading channels. Our results manifest that a zero diversity gain is obtained with full-duplex.
Resumo:
This article reflects on the usefulness of photo elicitation in research with young people. As part of an Economic and Social Research Council-funded project exploring conflict and divisions in contested cities, teenagers living or attending schools in segregated areas of Belfast were presented with 11 photographs depicting the city's traditional ethno religious divisions, the new ‘post conflict’ consumerist city and youth subcultures. In response to each photo, the young people produced individual written comments and their opinions were fleshed out during follow-up focus group interviews. Drawing on these responses, the strengths and weaknesses of using photo elicitation in research with young people and its capacity to generate new insights into teenagers' spatial perceptions and experiences are outlined.
Resumo:
The photographs in this album were selected with the assistance of the Sir Robert Hart Research Project, which is a collaboration between Special Collections & Archives in the Library, the School of Modern History & Anthropology, Queen’s University Belfast, and the Institute of Modern History at the Chinese Academy of Social Sciences (CASS) in Beijing. The research project is creating an annotated photobook from the Sir Robert Hart Photo Collection (originally donated in the 1970s) and the Irons Collection. The photographs here reflect those that will be included in the book.
Resumo:
Seeds are traditionally considered as common or even public goods, their traits as ‘products of nature’. They are also essential to biodiversity, food security and food sovereignty. However, a suite of techno-legal interventions has legislated the enclosure of seeds: seed patents, plant variety protections, and stewardship agreements. These instruments create and protect private proprietary interests over plant material and point to the interface between seeds, capitalism, and law. In the following article, we consider the latest innovations, the bulk of which have been directed toward genetically disabling the reproductive capacities of seeds (terminator technology) or tying these capacities to outputs (‘round-up necessary’). In both instances, scarcity moves from artificial to real.
For the agro-industrial complex, the innovations are perfectly rational as they can simultaneously control supply and demand. For those outside the complex, however, the consequences are potentially ruinous. The practices of seed-saving and exchange no longer are feasible, even covertly. Contemporary genetic controls have upped the ante, by either disabling the reproductive capacity of seeds or, through cross-pollination and outcrossing, facilitating the autonomous spread of the genetic modifications that are importantly still traceable, identifiable and therefore capable of legal protection. In both instances, genuine scarcity becomes the new standard as private interests dominate what was a public sphere.
Resumo:
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.
Resumo:
Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.
Resumo:
Shared services are a popular reform for governments under financial pressure. The hope is to reduce overheads and increase efficiency by providing support services like HR, finance and procurement once to multiple agencies. Drawing on insights from organization theory and political science, we identify five risks that shared services won’t live up to current expectations. We illustrate each with empirical evidence from the UK, Ireland and further afield, and conclude with suggestions on how to manage these risks.