135 resultados para Phase type distributions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porcine circovirus type 2 (PCV2) is the essential infectious agent of post-weaning multisystemic wasting syndrome (PMWS), one of the most important diseases of swine. Although several studies have described different biological properties of the virus, some aspects of its replication cycle, including ultrastructural alterations, remain unknown. The aim of the present study was to describe for the first time a complete morphogenesis study of PCV2 in a clone of the lymphoblastoid L35 cell line at the ultrastructural level using electron microscopy techniques. Cells were infected with PCV2 at a multiplicity of infection of 10 and examined at 0, 6, 12, 24, 48, 60 and 72 h post-infection. PCV2 was internalized by endocytosis, after which the virus aggregated in intracytoplasmic inclusion bodies (ICIs). Subsequently, PCV2 was closely associated with mitochondria, completing a first cytoplasmic phase. The virus entered the nucleus for replication and virus assembly and encapsidation occurred with the participation of the nuclear membrane. Immature virions left the nucleus and formed ICIs in a second cytoplasmic phase. The results suggest that at the end of the replication cycle (between 24 and 48 h), PCV2 was released either by budding of mature virion clusters or by lysis of apoptotic or dead cells. In conclusion, the L35-derived clone represents a suitable in-vitro model for PCV2 morphogenesis studies and characterization of the PCV2 replication cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.

Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.

Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.

Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a compilation of the geometry measures acquired using optical and IR spectroscopy and optical spectropolarimetry to probe the explosion geometry of Type Ia supernovae (SNe Ia). Polarization measurements are sensitive to asymmetries in the plane of the sky, whereas line profiles in nebular phase spectra are expected to trace asymmetries perpendicular to the plane of the sky. The combination of these two measures can overcome their respective projection effects, completely probing the structures of these events. For nine normal SNe Ia, we find that the polarization of Si II ?6355 at 5 days before maximum (p Si II ) is well correlated with its velocity evolution (\dot{v}_Si II), implying that \dot{v}_Si II is predominantly due to the asymmetry of the SNe. We find only a weak correlation between the polarization of Si II and the reported velocities (v neb) for peak emission of optical Fe II and Ni II lines in nebular spectra. Our sample is biased, with polarization measurements being only available for normal SNe that subsequently exhibited positive (i.e., redshifted) v neb. In unison these indicators are consistent with an explosion in which the outer layers are dominated by a spherical oxygen layer, mixed with an asymmetric distribution of intermediate-mass elements. The combination of spectroscopic and spectropolarimetric indicators suggests a single geometric configuration for normal SNe Ia, with some of the diversity of observed properties arising from orientation effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of the Random-Phase Approximation Hamiltonians, encountered in different frameworks, like time-dependent density functional theory or Bethe-Salpeter equation, is complicated by their non-Hermicity. Compared to their Hermitian Hamiltonian counterparts, computational methods for the treatment of non-Hermitian Hamiltonians are often less efficient and less stable, sometimes leading to the breakdown of the method. Recently [Gruning et al. Nano Lett. 8 (2009) 28201, we have identified that such Hamiltonians are usually pseudo-Hermitian. Exploiting this property, we have implemented an algorithm of the Lanczos type for Random-Phase Approximation Hamiltonians that benefits from the same stability and computational load as its Hermitian counterpart, and applied it to the study of the optical response of carbon nanotubes. We present here the related theoretical grounds and technical details, and study the performance of the algorithm for the calculation of the optical absorption of a molecule within the Bethe-Salpeter equation framework. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new compound, Mn8Pd15Si7, is reported to crystallize in a face centered cubic unit cell of dimension a = 12.0141(2) angstrom, space groupFm (3) over barm, and can thus be classified as a G-phase. The crystal structure was studied by single crystal X-ray diffraction, X-ray and neutron powder diffraction and electron diffraction. A filled Mg6Cu16Si7 type structure was found, corresponding to the Sc11Ir4 type structure. The magnetic properties were investigated by magnetization measurements and Reverse Monte Carlo modeling of low temperature magnetic short-range order (SRO). Dominating near neighbor antiferromagnetic correlations were found between the Mn atoms and geometric frustration in combination with random magnetic interactions via metal sites with partial Mn occupancy were suggested to hinder formation of long-range magnetic order. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new phase in the ternary Ir-Mn-Si system has been synthesised. From powder neutron diffraction data the crystal structure was determined to be of the AlAu4 type and to be described in the cubic space group P2(1)3 with the unit cell a = 6.4973(3) Angstrom. Susceptibility measurements using a SQUID-magnetometer showed a transition typical of anti ferromagnetism, with T-N = 210 K. Low temperature antiferromagnetic order is confirmed by extra peaks in neutron diffractograms recorded at 10 and 80 K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M and 1.1 M combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M of Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia. © 2012 The American Astronomical Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In astrophysical systems, radiation-matter interactions are important in transferring energy and momentum between the radiation field and the surrounding material. This coupling often makes it necessary to consider the role of radiation when modelling the dynamics of astrophysical fluids. During the last few years, there have been rapid developments in the use of Monte Carlo methods for numerical radiative transfer simulations. Here, we present an approach to radiation hydrodynamics that is based on coupling Monte Carlo radiative transfer techniques with finite-volume hydrodynamical methods in an operator-split manner. In particular, we adopt an indivisible packet formalism to discretize the radiation field into an ensemble of Monte Carlo packets and employ volume-based estimators to reconstruct the radiation field characteristics. In this paper the numerical tools of this method are presented and their accuracy is verified in a series of test calculations. Finally, as a practical example, we use our approach to study the influence of the radiation-matter coupling on the homologous expansion phase and the bolometric light curve of Type Ia supernova explosions. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the brightness distribution expected for thermonuclear explosions that might result from the ignition of a detonation during the violent merger of white dwarf (WD) binaries. Violent WD mergers are a subclass of the canonical double degenerate scenario where two carbon-oxygen (CO) WDs merge when the larger WD fills its Roche lobe. Determining their brightness distribution is critical for evaluating whether such an explosion model could be responsible for a significant fraction of the observed population of Type Ia supernovae (SNe Ia). We argue that the brightness of an explosion realized via the violent merger model is mainly determined by the mass of Ni produced in the detonation of the primary COWD. To quantify this link, we use a set of sub-Chandrasekhar mass WD detonation models to derive a relationship between primary WD mass (m) and expected peak bolometric brightness (M). We use this m-M relationship to convert the masses of merging primary WDs from binary population models to a predicted distribution of explosion brightness. We also investigate the sensitivity of our results to assumptions about the conditions required to realize a detonation during violent mergers ofWDs. We find a striking similarity between the shape of our theoretical peak-magnitude distribution and that observed for SNe Ia: our model produces a M distribution that roughly covers the range and matches the shape of the one observed for SNe Ia. However, this agreement hinges on a particular phase of mass accretion during binary evolution: the primary WD gains ~0.15-0.35M? from a slightly evolved helium star companion. In our standard binary evolution model, such an accretion phase is predicted to occur for about 43 per cent of all binary systems that ultimately give rise to binary CO WD mergers. We also find that with high probability, violent WD mergers involving the most massive primaries (?1.3M?, which should produce bright SNe) have delay times ?500 Myr. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ aphysically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 10 g cm, as well as one high central density (5.5 × 10 g cm) and one low central density (1.0 × 10 g cm) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by postprocessing10 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding thewhite dwarf, producing a range of 56Ni masses from 0.32 to 1.11M. As a general trend, the models predict that the stableneutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (~3000×10 000 km s) in a shell surrounding a Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s, respectively. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type Ia supernovae are thought to result from thermonuclear explosions of carbong'oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of 0.9M. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M to 0.9M. © 2010 Macmillan Publishers Limited. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide 'Safety-Catch' resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1µM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.