299 resultados para Parallel lines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous reports have shown that DNA methylation profiles within primary human malignant tissues are altered when these cells are transformed into cancer cell lines. However, it is unclear if similar differences in DNA methylation profiles exist between DNA derived from peripheral blood leukocytes (PBLs) and corresponding Epstein-Barr Virus transformed lymphoblastoid cell lines (LCLs). To assess the utility of LCLs as a resource for methylation studies we have compared DNA methylation profiles in promoter and 5' regions of 318 genes in PBL and LCL sample pairs from patients with type 1 diabetes with or without nephropathy. We identified a total of 27 (similar to 8%) genes that revealed different DNA methylation profiles in PBL compared with LCL-derived DNA samples. In conclusion, although the profiles for most promoter regions were similar between PBL-LCL pairs, our results indicate that LCL-derived DNA may not be suitable for DNA methylation studies at least in diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel 3rd-order compact E-plane ridge waveguide filter is presented. Miniaturization is achieved upon introducing a configuration of parallel-coupled E-plane ridge waveguide resonators. Furthermore, the proposed filter allows for transmission zeros at finite frequencies. Fabrication simplicity and mass producibility of standard E-plane filters is maintained. The numerical and experimental results are presented to validate the proposed configuration. A miniaturisation factor of 2 and very sharp upper cutoff are achieved. 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the operation of a series-L/parallel-tuned class-E amplifier and its equivalence to the classic shunt-C/series-tuned class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given. Furthermore, a design procedure is introduced that allows the effect that nonzero switch resistance has on amplifier performance efficiency to be accounted for. The technique developed allows optimal circuit components to be found for a given device series resistance. For a relatively high value of switching device ON series resistance of 4O, drain efficiency of around 66% for the series-L/parallel-tuned topology, and 73% for the shunt-C/series-tuned topology appear to be the theoretical limits. At lower switching device series resistance levels, the efficiency performance of each type are similar, but the series-L/parallel-tuned topology offers some advantages in terms of its potential for MMIC realisation. Theoretical analysis is confirmed by numerical simulation for a 500mW (27dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned class E power amplifier, operating at 2.5 GHz, and excellent agreement between theory and simulation results is achieved. The theoretical work presented in the paper should facilitate the design of high-efficiency switched amplifiers at frequencies commensurate with the needs of modern mobile wireless applications in the microwave frequency range, where intrinsically low-output-capacitance MMIC switching devices such as pHEMTs are to be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.

Relevância:

20.00% 20.00%

Publicador: